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Reduce uncertainties in our knowledge of the functioning of Tropical Atlantic (TA)
climate, particularly climate-related ocean processes (including stratification) and

1 . . . . X
dynamics, coupled ocean, atmosphere, and land interactions; and internal and
externally forced climate variability.

) Better understand the impact of model systematic error and its reduction on X

seasonal-to-decadal climate predictions and on climate change projections.

Improve the simulation and prediction TA climate on seasonal and longer time
3 |scales, and contribute to better quantification of climate change impacts in the| X
region.

Improve understanding of the cumulative effects of the multiple stressors of
climate variability, greenhouse-gas induced climate change (including warming and
deoxygenation), and fisheries on marine ecosystems, functional diversity, and
ecosystem services (e.g., fisheries) in the TA.

Assess the socio-economic vulnerabilities and evaluate the resilience of the
5 |welfare of West African fishing communities to climate-driven ecosystem shifts
and global markets.
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There has been a minor deviation from the original plan for beneficiary WU (12). Originally
all 24 PMs for this beneficiary were devoted to D7.2 (scheduled for month 36). However, WU
has conducted some research in the framework of task 7.1, by the analysis of the Bjerknes
feedback in CMIP5 simulations, that it is necessary to understand how climate models
represent the equatorial Atlantic variability. This was not explicitly mentioned in the DOW,
but this analysis will help to design and develop model modifications in task 7.2. The
beneficiary WU (12) devoted approximately 6 PMs to this key issue. We estimate that the
work engaged by WU for D7.2 will be addressed with the remaining 18 PMs of their total
contribution to WP7.
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D7.1: Report on the assessment of the representation of seasonal to decadal tropical
Atlantic variability by the state-of-the-art coupled models and its relation to mean state
errors based not only on existing simulations (CMIP5 and SPECS), but also on new PREFACE
models configurations.

This deliverable contributes to the following WP objectives:

1. To make an assessment of the representation of Tropical Atlantic variability at s2d
timescales by the state-of-the-art climate models (CMIP5 and other specific configurations).
2. To understand through statistical analysis and model experimentation the relationship
between the model systematic error and the representation of Tropical Atlantic variability at
s2d timescales.

?See List of person-months, nature and dissemination level of deliverable




1. Representation of Tropical Atlantic modes of variability by CMIP5 models

E. Exarchou’, I. Polo?, B. Rodriguez-FonsecaZ, E. Sanchez-GomeZz®
L1c3, Barcelone, Spain

2 UCM, Madrid, Spain

3 CERFACS, Toulouse, France

Tropical Atlantic variability (TAV) features two dominant modes with distinct spatial
patterns of Sea Surface Temperature (SSTs): the first one is an inter-hemispheric meridional
SST gradient associated to cross-equatorial surface winds, also called the Atlantic Meridional
Mode (AMM) (Carton et al 1996, Chang et al 1997, Servain et al. 1999, Ruiz-Barradas et al
2000, Chiang and Vimont 2004). The second mode is characterized by a zonal SSTs gradient
over the equatorial area, and it is known as the Equatorial Mode (EM hereinafter), Zonal
Mode or Atlantic Nifio (Carton et al 1996, Xie and Carton 2004, Chang et al 2006; Huang and
Shukla 2005, Keenlyside and Latif 2007). The seasonality of the AMM and EM is different,
while AMM peaks in boreal spring; the EM does later in boreal summer. The AMM is the
dominant mode of variability at decadal timescales, though decadal peaks have also
identified in the EQ from observations (Nnamchi et al. submitted).

The representation of the EM by state-of-the-art coupled models was investigated by
Richter et al. 2014 using the pre-industrial (piControl) experiments from CMIP5 (Coupled
Model Intercomparison Phase 5, Taylor et al. 2012) data base. They show, that in despite of
the persistent biases present in the mean climate, most of models are able to reproduce
observed equatorial variability in terms of spatial structure and explained variance. Here we
have extended this analysis to other variability modes, and also applying other approaches.

1.1 The Equatorial Modes

To analyse Tropical Atlantic variability to seasonal from decadal timescales, we have used an
Empirical Orthogonal Function (EOFs) analysis of the monthly SST anomalies for both
piControl experiments from 17 CMIP5 models (see Table 1) and the HadISST observations
(Rayner et al. 2003). The resulting EOFs have been analysed, focusing on the spatial structure
and on the seasonal cycle of the modes obtained.

Results show that in general CMIP5 models seem to represent correctly the first 3 modes of
variability over the Tropical Atlantic. In the observations, the first and third modes
correspond to equatorial Atlantic variability, whereas the second mode consists of a
meridional SST dipole (not shown), corresponding to the AMM. In the following, we focus on
equatorial Atlantic variability, then on modes 1 and 3. The first mode is known as the
equatorial basin-wide mode (Martin-Rey et al. 2015) and the third mode as the South
Atlantic ocean dipole (SAOD, Nnamchi et al. 2011).

Most of the models also simulate these 2 modes in the same order of explained variance as
the observations. Figures 1 (top panel) shows the Taylor diagrams in terms of pattern
correlation and mean error for both equatorial modes (mode 1 and mode 3). In general
models capture well the spatial structure of the equatorial modes. In particular, models
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represent better the mode 3. However the seasonality of the modes (Figure 1, low panel)
differs from the observations especially for the basin-wide mode. In the observations this
mode peaks in boreal summer while for models is more active in boreal autumn-winter. The
SAOD mode peaks in boreal summer for most of the models and the observations.
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Figure 1. Top: Taylor diagram of the 18 models from CMIP5 piControl (see table 1) for mode 1 (left, basin-wide
mode) and mode 3 (right, SAOD). Bottom: Seasonal cycle of the mode 1 (left) and mode 3 (right).

This suggests that the models simulate better the autumn-winter equatorial Atlantic
variability; nevertheless some variability is also present in boreal summer.

The performance of the modes in the in relation to the mean global bias is discussed in the
deliverable 8.1.



Modeling Center (or Group) Institute ID Model Name Nyears/
Resolution
Canadlian Centre for Climate Modelling and CCCMA CanESM2 996/128x64
Analysis
National Center for Atmospheric Research NCAR CCSM4 501/288x192
Centre National de Recherches Meteorologiques 850/256 x 128
/ Centre Europeen de Recherche et Formation CNRM-CERFACS CNRM-CM5
Avancees en Calcul Scientifique
Commonwealth Scientific and Industrial
Research Organization in collaboration with CSIRO-QCCCE CSIRO-Mk3.6.0 500/192x96
Queensland Climate Change Centre of Excellence
GFDL-ESM2G 500/
NOAA Geophysical Fluid Dynamics Laboratory NOAA GFDL
GFDL-ESM2M 500
531/144x90
GISS-E2-H
NASA Goddard Institute for Space Studies NASA GISS
GISS-E2-R 550/144x90
HadGEM2-CC 240/192x145
Met Office Hadley Centre MOHC
HadGEM2-ES
575/
Institute for Numerical Mathematics INM INM-CM4 500/180x120
Institut Pierre-Simon Laplace IPSL IPSL-CM5A-LR 1000/96x96
Japan Agency for Marine-Earth Science and 255/128x64
Technology, Atm'osph'ere and Ocean Research MIROC MIROC-ESM-CHEM
Institute (The University of Tokyo), and National
Institute for Environmental Studies
Atmosphere and Ocean Research Institute (The 100/640x320
. . . . MIROC4h
University of Tokyo), National Institute for MIROC
Environmental Studies, and Japan Agency for MIROCS 670/256x128
Marine-Earth Science and Technology
Max Planck Institute for Meteorology MPI-M MPI-ESM-LR 1000/192x96
. : 500/320x160
Meteorological Research Institute MRI MRI-CGCM3
Norwegian Climate Centre NCC NorESM1-M 501/144x96
: 145/360x180
Met Office Hadley Centre MOHC OBS-HadISST

Tablel: Models from CMIP5 experiments used in this analysis and observational dataset.




1.2 The Atlantic Meridional Mode

In this work we have investigated the representation of the AMM by the CMIP5
models. Two complementary approaches have been developed in PREFACE: i) The first one
analyses the CMIP5 multi-model ensemble; ii) and the second one uses the innovative
technique of Partial Linear Squares (PLS) regression to identify modes of variability in models
and reanalysis.

| ) The Atlantic Meridional Mode in CMIP5

In this case, we have used the historical experiments in order to compare more
properly to the observations. The period of the analysis is 1950-2005. The AMM in models is
compare to the one obtained from two different reanalysis: NCEP/NCAR (Kalnay et al. 1996)
and Twenty Century reanalysis (20CR, Compo et al. 2011). To compute the AMM we have
followed the methodology described in Chiang and Vimont, 2004, which is based on a
Maximum Covariance Analysis (MCA) between the SSTs and 10 m winds (two components)
fields. The analysis is performed by each season separately, considering as JFM (winter), AMJ
(spring), JAS (summer) and OND (autumn). In order to remove climate trends, the data, for
both models and observations, are previously detrended using the least-squares technique.
All the models have been interpolated to the same common grid 1.5° x 1.5° for
comparability.

A preliminary analysis reveals that the AMM spatial structure and percentage of
covariance explained can be different amongst the members of one model. This indicates
that internal variability is very important in the processes governing the AMM. For this
reason, in this analysis we have included only models with 3 members or more in the CMIP5
historical experiments. This leads to an ensemble of 17 models. In order to increase the
statistical robustness, the 3 members have been concatenated before computing MCA.

Figure 2 shows the zonal means of SST and two wind components (U and V)
corresponding to the anomalies associated to the AMM for models and reanalysis. The
models are represented by the ensembles mean (red line) and inter-models spread (gray
shading) calculated as one standard deviation.

We show only JFM and AMJ seasons, when the AMM is most active during the year.
From figure 2a-b it can be noticed that the intermodal spread is larger in the southern
hemisphere, reaching until 0.3-0.4°C. In winter, both reanalysis are in the spread of models,
however this is not the case of spring season. Models underestimate clearly the strength of
the SST meridional gradient, with anomalies in SST much lower in the southern hemisphere
comparing to reanalysis. This indicates that the SST dipole is not present in all models of the
ensemble.

Concerning surface wind anomalies, the spatial structure of zonal winds (figure 2c-d)
is correctly simulated in models, however only northern hemisphere anomalies are slightly
underestimated in JFM and overestimate in AMJ, which is coherent with the weaker SSTs
anomalies in the southern hemisphere. Meridional winds anomalies are also correctly
simulated, however the latitudinal position of the maximum cross-equatorial wind is located
southwards in models (figure 2e-f). This is connected to a too southward location of the
Inter-Tropical Convergence Zone, which is a common model bias (Richter et al. 2008, 2012).
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Figure 2: Zonal means of SST (a-b), zonal (c-d) and meridional (e-f) 10m winds anomalies associated to the
AMM in models and reanalysis (black dashed lines). The models are represented by the ensemble mean (red
line) and the inter-model spread (gray shading) computed from one standard deviation.

To conclude, the ensemble of CMIP5 models considered in this work represent the
AMM, though the strength of the inter-hemispheric gradient is clearly underestimated,
whereas winds structures are correctly simulated. It is difficult to determine a link between
the errors in models mean climate and the representation of the AMM, since mean state
biases are very similar amongst the models. Figure 3 shows the main common errors found
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in coupled models in the Tropical Atlantic: the warm bias SSTs in the south-eastern part of
the basin; the too southward location of the ITCZ, in particular from winter to spring; and the
weaker surface wind speed in the south Atlantic.
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Figure 3: Left : SST bias in CMIP5 models from Toniazzo and Woolnough 2013, hatching indicates where most of
model agree in the sign of the bias. Center: Sesasonal cycle of the latitudinal position of the ITCZ computed as
the maximum precipitation. The 20CR reanalysis is represented by the black line, the models ensembles mean
by the red line and the inter-model spread by the gray shading. Right: Seasonal cycle of the surface wind speed
bias in the south Tropical Atlantic, compared with different products: 20CR, OAFLUX, NOCS and TROPFLUX
datasets. The models ensemble mean is represented by the red line and the inter-model spread by the gray
shading

Warmer SSTs anomalies in the southeast Tropical Atlantic comparing to the northern
part of the basin can inhibit the anomalous cooling and the formation of an inter-
hemispheric SST gradient. At the same time a too southward ITCZ leads to a weaker wind
speed bias in the southern hemisphere, though wind speed in the northern hemisphere is
correctly simulated (not shown) by models. This indicates a north-south bias in the wind
strength, which decreases the rate of SST cooling (or warming for the negative phase) by
latent heat loss in the southern hemisphere comparing to the northern hemisphere.

Il) PLS technique applied to AMM

The Partial Least Squares (PLS) methodology is a regression methodology that is used
in order to analyze a set of response variables Y in terms of a set of predictors X. It combines
features from multiple linear regression and PCA. PLS creates mutually orthogonal
components that maximize the covariance between the dependent and independent
variables. PLS is a fairly novel approach in identifying teleconnection patterns. It has been
recently demonstrated that the PLS regression can successfully extract consistent
teleconnection patterns across different models and thus can be a useful methodology to
evaluate models in terms of their ability to reproduce leading teleconnection patterns, such
as the North Atlantic Oscillation and the East Atlantic pattern (Gonzalez-Reviriego et al.,
2014). Here, we apply the PLS regression method in order to identify the AMM, one of the
leading mode of variability in the Tropical Atlantic. We have focused on spring season (April-
June), where the AMM peaks. Two sets of model data have been considered from the
simulations performed with EC-Earth2.3 under the CMIP5 framework: one set consists in
decadal predictions initialized from observational data every 1st November from 1993 to



2009, and the second set is a historical simulation (see Table 2). The set of response variables
Y we use are the teleconnection patterns for the variables SST, zonal surface wind U and
meridional surface wind V for the months AMJ, when this mode is more active, for the
period 1960-2005. The teleconnection patterns are obtained with joint singular value
decomposition (SVD) method from NCEP reanalysis data, and they are provided by CERFACS.
The set of predictors X is the model time series of SST, U and V anomaly fields for the
corresponding months and years.

Exp ID | Resolution Ensembles | Initialized Period
Init ORCA1L46-T255L91 5 Every year, 1st 1960-2005
November, 10 years long
Histo ORCA1L46-T255191 3 Once in 1960 from 1960-2005
piControl

Table 2: Summary of experiments used in this study.

We find that even though the AMM spatial patterns in SST, U and V can be extracted
from both initialized and historical sets of experiments during AMJ (figure 4, spatial patterns
for SST), only in the initialized experiment Init the AMM is a leading mode of variability,
explaining more than 60% of the response variables (figure 5). The low explained variance in
Histo is likely because of averaging out different ensemble members in which the variability
is not in phase. Furthermore, we find that the explained variance does not significantly
change as a function of forecast time in Init (figure 5). In both Init and Histo the explained
variance is less than the one obtained when the PLS methodology is applied directly to the
NCEP SST, U and V time series in order to predict the NCEP spatial patterns (figure 5).

SVD, for NCEP SST data PLS, for i00k SST data, cor is 0.96 PLS, for b02p SST data, cor is 0.93
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Figure 4: Spatial structure of the SST pattern in AMM (months AMJ) for the period 1960-2005. Left: obtained
with the SVD methodology from the NCEP reanalysis data (provided by CERFACS). Middle and right: obtained
with the PLS methodology, where we used model SSTs as predictors in order to predict the NCEP SST pattern
(left), using data from the the initialized experiment (Init, middle plot) for the first forecast year, and from the
historical experiment (Histo, right plot). The spatial correlation between the model and the NCEP spatial
structures is 0.96 for init and 0.93 for Hist.
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Figure 5: Explained variance by the first PLS component in predicting the AMM patterns (months AMJ) for the
period 1960-2005, in SST (red), U (blue) and V (green), as a function of forecast time (in years). Lines: the
explained variance for the initialized run Init. The asterisks show the explained variance in the corresponding
variables when the PLS method is applied in the NCEP data. The circles denote the explained variance in the
historical run Histo. For illustration purposes the points are located in Lyl, but they are not a function of the
forecast time.

Our future work is to extend this methodology to other CMIP5 models (Init and Histo)
and also to include the EM in our analysis.

2. Representation of the mechanisms for seasonal to decadal variability: feedbacks and
role of the thermodynamic processes and ocean dynamics

AL Deppenmeierl, R. Haarsma®, N. Keenlysidez, M. Latif3, H. Nnamchi®, Y. Planton®, E.
Sanchez-Gomez®, A. Voldoire®

L WU, Wageningen, Netherlands

2 UiB, Bergen, Norway

* GEOMAR, Kiel, Germany

* UNN, Nsukka, Nigeria

> MF-CNRM, Toulouse, France

® CERFACS, Toulouse, France

The tropical coupled ocean-atmosphere variability contains two major feedback
mechanisms: The Bjerknes feedback (Ruiz-Barradas et al. 2000, Keenlyside and Latif 2007,
Janssen et al. 2008), BF hereinafter and the Wind-Evaporation-SST feedback (WES) (Xie and
Philander 1994, Xie and Carton 2004, Chang et al. 1997). Both mechanism have been largely
studied from theoretical models, observations, reanalysis and coupled models. The BF
feedback is responsible of the equatorial Atlantic variability (EM), and the WES feedback is a
thermodynamic air-sea interaction that creates and maintains the meridional SST gradients.
The representation of these mechanisms by state-of-the-art models (CMIP5) has been
investigated here.

We have conducted further analysis in order to improve our understanding of the
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role of thermodynamics versus the ocean dynamics in generating SSTs variability in the
Tropical Atlantic (2.3).

2.1 The Bjerknes feedback in CMIP5 models
(Deppenmeier et al. 2015, under revision)

Several studies have already investigated this feedback in general circulation models
(GCMs) (Dewitt et al. 2005, Ding et al., 2015, Munoz et al. 2014). The present work has
analysed the BF in reanalysis data (ERA-Interim (ERAI), Dee et al. 2011) for the atmosphere
and ORAS4 (Balmaseda et al. 2013) for the ocean) and in 36 CMIP5 models. The Bjerknes
feedback consists of three parts: the influence of eastern equatorial SST anomalies on zonal
wind stress (t,) anomalies in the western basin, Asst:; the wind stress anomaly influence on
the eastern equatorial heat content (HC) anomalies A ¢ ; and the local response of SST to
changes in HC, Aycssst (Keenlyside and Latif 2007).

In order to understand the mechanism of the EM and confirm earlier studies, we will first
investigate it from reanalysis data. From the seasonally stratified correlation analysis of
reanalysis data we conclude that the BF mechanism indeed exists in the TA (figures 1-5
Deppenmeier et al.). Our findings are in line with research performer earlier (Ruiz-Barradas
et al. 2000, Keenlyside and Latif 2007, Janssen et al. 2008, Ding et al. 2010). We find the
dominant season of the BF to be May, June, and July, and we restrict our analysis from here
on to these months. During that time, the patterns are most distinct which facilitates
comparison between reanalysis and model output.

An analysis of the seasonal cycle on the variables of interests for the BJ feedback shows
that there are biases in the model output (figures 6-7 Deppenmeier et al.), but does this also
imply errors in the simulated BF? We have investigated this question by correlating the three
variable pairs in the same manner as done for the reanalysis above, and subsequently
compare the spatial response patterns to the pattern obtained from reanalysis by
performing pattern correlation analysis. Figure 6 shows the pattern correlation between
models and reanalysis (vertical axis) versus the correlation value between the two variables
of the respective component of the BF (horizontal axis) averaged over two areas of interests.
In the following, we use indices as indicators for the western TA (wa4, 4°N — 4°S; 40°W —
20°W) and the eastern TA (ea4, 4°N — 4°S and 20°W - 10°E), see also figure 2 in
Deppenmeier et al.). In figure 6 the blue shading indicates where the models simulate
correctly the BF component.

12



1.00r ' —  1.00f v — 1 1.00 '
0.75| *ﬂfo}! 0.75+ & | o N
0.50+ i 0.50+ 0.50F ;
?o .O 6 (%]
H : 0.25: 0.25¢ o J
0.25 ° . Q;a%
0.00 0.00 6 0.00 5 .
o
—0.25t © 0.25: -0.25¢ °
- L 1 OSOL I A ul _O.SOL | L — ")
03595 00 05 1.0 -05 00 05 10 =05 00 05 1.0
Corr Ay ,, Wad Corr A_ ;- ea4 Corr Aye 557 €24

Figure 6: Pattern correlation between models and reanalysis (MRA) plotted against the correlation value
between the two variables of the respective component of the BF averaged over the area of interest. The red
line denotes the reanalysis correlation value in the region, the pink line the multi model average. We show the
results for June (reanalysis) and July (models). The blue shading indicates where models simulate correctly the
BF component.

From figure 6 it is clear that the Asst>: and A 5uc parts of the BF are reasonably well
simulated, notwithstanding the underlying model mean-state biases. However, the third
component of the BF Aycssst is not correctly simulated. We investigate further this issue by
analysing the structure of the variance of the ocean sub-surface temperature within the
upper 300m (Figs. 13 and 14 from Deppenmeier et al.). If we compare to ORAS4, the
variance structure of the ocean sub-surface temperature is not well represented by models.
The latter can explained the deficiencies to represent the HC -> SST relationship. We argue
that this may have also implications in the low levels of skill found in the EM in seasonal
forecasts systems.

2.2 The WES feedback in CMIP5 models

The WES feedback has also previously investigated in observations, reanalysis and
coupled models (Breugem et al. 2006, Mahajan et al. 2009, Munoz et al. 2014), and in some
in some theoretical approaches (Vimont 2011). Here we use some models from the CMIP5
database to analyse the representation of the physical mechanism associated to the WES
feedback. In our analysis, and given the strong internal variability present in the Tropical
Atlantic, only models with three members or more in the historical ensemble have been
considered. Other models have been removed from the analysis since all the variables
required were not available. Finally, the multi-model dataset is composed by 17 coupled
models.

The mechanisms of WES feedback can be explained following Xie and Philander, 1994
as: a north—south SST anomalous gradient will lead to a meridional sea level pressure
gradient that can modify the surface winds. Superimposed on the background easterly trade
winds, the anomalous westerly winds north of the equator decrease surface wind speed and
hence latent heat flux, while the anomalous easterly winds south of the equator increase
surface wind speed and associated latent heat fluxes. These changes amplify the initial inter-
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hemispheric SST difference, and thus provide a positive feedback. According to this, In this
work the Wes feedback has been divided in three parts (figure 7): part 1 represents the
response to surface winds speed (U) to the SST anomalies (SST->U); part 2 consists of the
latent heat (LH) flux modifications by surface winds speed (U->LH); and finally the part 3 is
the SST response to latent heat flux forcing (LH->dSST/dt). It is important to note that this
study has been performed from monthly mean fields of SST, wind speed and latent heat. The
tendency of SSTs (dSST/dt) has been considered for the part 3 of WES feedback.

The study has been performed on a seasonal basis, considering JFM, AMJ, JAS and
OND. We have included in our analysis two reanalysis 20CR and NCEP and observed heat
fluxes: NOCS (Berry and Kent, 2009), TropFLux (Praveen-Kumar et al. 2012), OAFlux (Yu and
Weller, 2008) datasets.

WIND
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r SPEED
(V) l
2

e
SST LATENT

HEAT (LH)

Figure 7: The WES feedback in three steps: 1) represents the response to surface winds speed (U) to the SST
anomalies; 2) consists of the latent heat (LH) flux modifications by surface winds speed (U->LH); and 3) is the
SST tendency response to latent heat flux forcing (LH->dSST/dt

A linear regression based on the least-squares approach has been used to determine
each part of the WES feedback described above. To do this, two boxes has been considered
in both sides of the equator: the Northern tropical Atlantic box (NTA: 5N-20N, 50W-20W)
and the Southern Tropical Atlantic box (STA: 0-20S, 20W-10E). Figure 8 shows the fraction of
variance explained by each part of the WES feedback, computed from the linear regression
parameters (the fraction of variance explained is given by the squared of the correlation
coefficient).

14



OAFLUX 1

TROPFLUX
REANALYSIS 0 - 10 10 L . L
EMEAN SsT=U LH->dSST/dt
08 08 - 08 4
hade' [ 06 06
NTA - o 4 \ 04 ]
00 4————— - T 00 00
JAM  AMJ  JAS  OND JFM AWM JAS  OND
bt ! : : . 10 L 1.0 1 L L
T- ->LH
= Y LH->dSST/dt
. 08 - 08
06 4 06
STA
04 4 o4
02 02 4
00 \\\‘7" 0.0

Figure 8: Fraction (from 0 to 1) of variance explained by the linear regression for each part of the WES feedback
according to figure 6 corresponding to the NTA (5N-20N, 50W-20W) (first row) and STA (0-20S, 20W-10E)
(second row) boxes respectively. The reanalysis are represented by dash black lines (with no distinction of 20CR
and NCEP); OAFlux data by pink lines; TropFlux by orange lines. The multi-model ensemble mean is represented
by the thick red line, and the inter-model spread (computed from one standard-deviation) by the gray shading.

Results show that even for the observations and reanalysis there are strong
discrepancies in quantifying the importance of the WES feedback for each part, what makes
more difficult the model evaluation. Following figure 8, the results can be summarized as
follows:

* Models underestimate the response of the SLP (surface winds) in the NTA throughout
the year. To investigate further the hydrostatic equilibrium of the atmospheric
boundary layer to underlying SSTs anomalies, higher frequency (daily) data would be
necessary. This is beyond the scope of this work.

* The U->LH relationship seems to be more linear in models than in observations in
both boxes. This can be due to the use of bulk formulae in coupled models, that uses
linear assumptions.

* The most important result: SSTs in models are overreacting to LH flux anomalies in
both boxes and for all the seasons of the year.

To further investigate the last point, we have analysed the relationship between the rest
of the heat fluxes (net flux, long wave, short wave, sensible heat flux) and the tendency of
SSTs. and the net heat flux is mainly dominated by the LH contribution in the tendency of
SSTs (not shown).

The evolution of SSTs can be defined the following a simplified equation of the heat
budget: dSST/dt = Qnet/pCpH + Advection + Entrainment + Diffusion

where p is the sea water density, Cp is the specific heat capacity of sea water and H is the
mixed layer depth. These three can be considered as constants over the regions studied in
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this work. According to this, our results may suggest that a greater portion of dSST/dt is
explained by heat fluxes in models than in observations, and the other purely ocean
processes related to ocean dynamic may be underestimated in CMIP5 models.

This is coherent to what has been found by Deppenmeier et al. 2015 on the BF
(section 2.1) and to the works by Nnamchi et al. 2015 and Ding. et al. 2015 that suggest that
the role of ocean dynamics driving SST variability in the Tropical Atlantic is not well
represented by state-of-the-art coupled models. This will be more detailed in section 2.3.

2.3 The role of the ocean dynamics driving SST variability
(Ding et al. 2015b, Nnamchi et al. under revision, Planton et al. under revision)

a) Partial coupled model experiments (Ding et al. 2015b)

We have examined the impact of SST bias on the representation of the interannual
variability during boreal summer over the equatorial Atlantic. For this, we have developed
and run two suites of partially coupled model (PCM) experiments with (PCM-Hflux) and
without (PCM-STD) surface heat flux correction by using the Kiel Climate Model (KCM). In
the experiments, surface wind stress anomalies are specified from observations while the
thermodynamic coupling between the atmospheric and oceanic components is still active as
in the fully coupled model. More details on the experiment can be found in Ding et al.
2015b.

We investigate the impact of subsurface temperature anomalies on local SST
variations by calculating the regression of SST anomalies onto local SSH (Sea Surface Height)
anomalies during boreal summer (figure 9). Here, SSH is used as a proxy for subsurface
temperature variations. The regression between the SSH and SST has been computed from
observations (figure 9a), the PCM experiment with no heat flux correction, PCM-STD (figure
9b), and the partially coupled model simulation with flux correction (PCM-Hflux, figure 9c).
Regression values calculated from observations show a link between subsurface and SST
variations (figure 9a), consistent with previous studies (Keenlyside and Latif 2007,
Deppenmeier et al. 2015). In contrast to the observations, subsurface and SST variations in
PCM-STD are coupled in the western tropical Atlantic but not in the east (figure 9b). This
seems to be associated with the climatological mean surface winds being biased westerly in
the east (not shown), implying Ekman downwelling along the equator, meaning that
subsurface temperature anomalies cannot easily impact SST variability in the east (Ding et
al., 2015). However, the PCM-Hflux configuration (figure 9c) captures well the observed
relation between subsurface temperature and SST variability in the eastern equatorial
Atlantic in both amplitude and explained variance, and the spatial pattern is roughly
consistent with the one seen in observations (figure 9a). The success for capturing the link is
probably because of the reduced westerly wind bias and the improved upper ocean
temperature structure in PCM-Hflux compared to PCM-STD (Figures 1a and S1 in Ding et al.
2015b). It is obvious that PCM-Hflux (figure 9c) still exhibits an unrealistic link between SST
and SSH in the western equatorial Atlantic similar to but weaker than in PCM-STD (figure
9b). This is probably because it is not possible to cure model bias in all aspects through only
reducing the warm bias at the sea surface using surface heat flux correction. So far, we have
focused on the role of subsurface temperature variations, an important element of the

16



Bjerknes feedback (Keenlyside and Latif , 2007). Nevertheless, some other ocean processes
may also contribute to SST variability, and their role in global climate models is also
uncertain. This is coherent to the findings described in sections 2.1 and 2.2 on feedbacks
mechanisms.

In conclusion: To derive a complete picture of the contribution of ocean dynamics in
stare-of-the-art coupled models a full heat budget analysis is required for both coupled
models and stand-alone ocean models in order to assess the impact of the air-sea coupling.
Heat budget in stand-alone ocean model has been already performed by Planton et al. (see
part c). But a multi-model approach should be undertaken in future studies.

(a), Observations

Figure 9: The regression (shading) of seasonal mean (JJA) SST anomalies onto local seasonal mean (JIA) sea
surface height (SSH) anomalies calculated from (a) observations, (b) PCM-STD, and (c) PCM-Hflux. The contours
are the explained variances, and their interval is 0.1. In Figure 6a, observed reconstructed SST [Rayner et al.,
2003] is employed and SSH from satellite (http://www.aviso.oceanobs.com/) is used. The unit of the regression
coefficients is C/(10 cm). From Ding et al. 2015b.

b) Fully coupled versus slab-ocean models (Nnamchi et al. in revision)

In this work we investigate the role of the dynamical coupling between the ocean and
atmosphere in generating the SSTs equatorial Atlantic variability. We explore this question
by comparing simulations of two sets of experiments using 12 different climate models from
the CMIP3 database (Meehl et al. 2007). The first set of experiments is based on state-of-
the-art, fully coupled general circulation models (Full-CGCMs, hereafter), and in the second
set, dynamical feedbacks are disabled by thermodynamically coupling the atmosphere to a
50m deep slab of motionless ocean (Slab-CGCMs hereinafter).
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To represent SST interannual variability in the equatorial Atlantic, we compute the
standard deviation (o{SST}') of the Atlantic Nifio Index (3°S-3°N, 0-20°W) from Slab-CGCMs
and Full-CGCMs considering June-July-August months (JJA). Figure 10a shows the scatter plot
for of{SST}' in Full-CGCMs versus Slab-CGCMs. For comparison to the Pacific, we include the
o{SST} for the Pacific Nifio3 index (5°S-5°N, 90-150°W) computed from DJF (boreal winter)
(Figure 10b). From figure 10a, the ofSST}' of the Atlantic Nifio of the Full-CGCMs
(representing the total variability of the equatorial Atlantic ocean-atmosphere coupled
system) is linearly dependent on the o{SST}' of the Slab-CGCMs with no interactive ocean
dynamics. The multi-model correlation coefficient is 0.96, corresponding to 92% of the
explained variance. In comparison, the equatorial Pacific variability exhibits more scatter
with an explained variance of only 3%. This implies that while dynamical coupling in the
equatorial Atlantic acts to amplify the o{SST}, coupled dynamics in the Pacific tends to
modify the SST variability.

We determined the proportions of the observed SST variability over the eastern
equatorial Atlantic Ocean by computing the JJA ratios of the modelled o{SST}' to recent
historical observations (NOAA, Smith et al. 2008) for the period 1984-2013. Figure 10c shows
the model/observations ratio in ofSST}' for the Atlantic Nifio index. For the Slab-CGCMs
ensemble, 10 models have ratios of >0.50, with the 12 Slab-CGCMs ensemble-mean of 68 +
23%, suggesting that thermodynamic processes dominate the equatorial Atlantic interannual
SST variability (figure 10c). Similar ratios were calculated for the boreal winter peak season
of the equatorial Pacific using the Nifo3 index. The corresponding ensemble-mean
contribution of thermodynamic feedbacks for the Nifio3 region is considerably lower at ~32
+11% (figure 10d).

The Full-CGCM ratios are also plotted on the same axes of figure 10 c-d. Some models
with deep mixed layer of generally >50 m (e.g., CCSM3, CGCM3.1_T47 and CGCM3.1_T63)
tend to underestimate the observed o{SST}'. In contrast, for those models in which the
thermodynamic component generate o{SST}' close to observations (e.g., GFDL-CM2.0, GFDL-
CM2.1, INM-CM3.0 and UKMO-HadGEM1), coupling to ocean dynamics leads to an
overestimation of the Atlantic Nifio o{SST}, given that the mixed layer depths are not much
different from the observed. The ensemble-mean of the Full-CGCMs reproduces the
temporal variability of the equatorial Atlantic SST as may be expected from the consistency
of the modelled mean mixed layer depths with observations.

We show here that thermodynamic mechanisms play dominant roles in both sets of
experiments, accounting for 68 + 23% of observed equatorial Atlantic interannual SST
variability in the Slab-CGCMs, through the WES feedback. The impact of coupling to a
dynamical ocean model is to amplify the variability and the Nifio-like spatial structure. We
conclude that, governed by stochastic atmospheric forced heat and moisture fluxes, the
Atlantic Nifio is not different from a first-order autoregressive (AR(1)) process.
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Figure 10: Multi-model linearity of thermodynamic feedbacks in the equatorial Atlantic and Pacific oceans and
modelled proportions of the observed variability. a-b, Relationship between the monthly Atlantic Nifio (35-3N, 0-
20W) and Pacific Nifio3 (55-5N, 90-150W) o{SST}' from Slab-CGCMs and Full-CGCMs. c-d, Atlantic Nifio and
Pacific Ni.o-3 model/observation ratio of the o{SST}'. Blue bars denote the ratio for Full-CGCMs; light-pink, Slab-
CGCMs. A ratio of >1.0 denotes an over-estimation of observed variability of ~0.40 K and 0.95 K for the Atlantic
Nifio and Pacific Nifio3, respectively. Panels ¢ and d are based on the JJA and December-January-February (DJF)
seasonal means, respectively. From Nnamchi et al. 2015.

c) Assessment of the representation of seasonal and interannual variability of a ocean
component in a coupled model (Planton et al. in revision)

We have investigated the performance of the CNRM-CM ocean model (NEMO,
Madec et al. 1998) in representing the equatorial Atlantic interannual variability. Our goal is
to evaluate the ocean model realism being forced by observed atmospheric forcing. This
study has been done in collaboration with WP5.
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This work aims at evaluating the NEMO ocean model realism being forced by observed
atmospheric forcing. Two atmospheric forcing have been used to drive the NEMO-ORCA1
configuration (with 42 vertical levels): the CORE-Il forcing and an ERA-Interim forcing
(slightly corrected for radiation biases).

We show that the variability of the surface temperature and the ocean heat content in the
upper 300 meters is reasonably well simulated whatever forcing is used. The location of
strong equatorial interannual variability shown at the PIRATA buoy at 35°W-ON between
80m and 120m depth is reproduced in the NEMO simulation, albeit with a weaker amplitude
(figure 11). Accordingly, the model reproduces well the South Equatorial Current (SEC) and
the Equatorial Under Current (EUC) extents. The vertical core of the EUC is near 60 m depth
at 23°W-0ON as observed at the PIRATA buoy. The strength of the EUC is however largely
underestimated by more than 40% compared to the PIRATA measures but it is of the same
order as in ocean reanalysis products. Generally, there is no clear improvement of using one
forcing product or the other.

0.1
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Figure 11: Hovmoeller diagram time versus depth of the anomaly of ocean temperature to the mean seasonal
cycle at the PIRATA buoy located at 35°WO°N (right) and for the NEMO-ORCA1 (left).

A comprehensive heat budget of the mixed layer has been performed in the NEMO
simulations (Figure 12) and this has shown that the heating of the mixed layer by the surface
flux (25—55W.m'2) is weaker in the model than estimates derived from observations that
range from 40W.m? to 95W.m™ (Foltz et al., 2003, Hummels et al., 2014, Schlundt et al.,
2014). It has been shown that it is due to an excessive penetration of the solar radiation in
the ocean, the mixed layer being relatively shallow in the region, the solar radiation impacts
also the ocean under the mixed layer. This effect is overestimated in the model. To increase
the solar radiation heating in the mixed layer, we have adapted the absorption coefficients
used in the model by using the coefficients estimations given in Wade et al. (2011).
Secondly, we have used a chlorophyll map so that the light penetration depends on the
geographical location and better match the observed spatial variability. Given these
adaptations, the air-sea flux impact on the mixed layer budget has increased to the range 38-
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95W.m™ in agreement with observed estimates, and the seasonal cycle of this term is better
reproduced.
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Figure 12: Mean seasonal cycle of the mixed layer heat budget in the box [15°W-6°W ; 4°S-1°N] averaged over
1982-2007 in the NEMO-ORCA1 model, after adaptation of the solar penetration effects.

Part of this work has been submitted for publication in Climate Dynamics (Planton et al.,
2015).

3.Relationship between the mean state and the representation of the variability.

N. Keenlyside’, M. Latif’, C. Prodhomme’®
L uiB, Bergen, Norway

’GEOMAR, Kiel, Germany

31C3, Barcelona, Spain

In this section we investigate how the errors in the mean state affect the
representation of Tropical Atlantic Variability. We have focused rather in the equatorial
Atlantic variability, represented by the Equatorial Mode (EM), Zonal mode (ZM) or Atlantic
Nifio. The first part of this study uses the existing simulations from CMIP5 and applies
statistical analysis to obtain empirical relationships between the mean state biases and the
representation of the equatorial Atlantic variability (3.1). The second part uses a numerical
approach in which the mean state of a coupled model is modified, in order to assess its
impact of the equatorial Atlantic variability (3.2). The latter work has been published in a
recent work by Ding. et al 2015a.

3.1 Relation between SST seasonal cycle and variability in the equatorial Atlantic

Huge efforts are done to improve the representation of coupled model mean state,
especially in the tropical Atlantic. The reduction of the mean bias is expected to lead to
improvements in other aspects of the simulation such as the representation of interannual
and intraseasonal variability. However, the relation between the correct representation of
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the mean state and the interannual variability has been seldom studied (Richter et al. 2014),
where the biases are huge in most of the coupled model (Toniazzo and Woolnough 2014).
The present study is aimed to investigate if there is a relation between the representation of
the mean bias in the equatorial Atlantic and the representation of the equatorial Atlantic
variability (Atlantic Nifio). For this purpose, we are using the CMIP5 coupled model database
the model used are summarized in Table 3.

Model Number of member
bcc 1
hadcm3 10
miroc4 3
miroc5 3
mri-cgcm 1
cnrm-cm 1
can-cmé4 10
MPI-OM 3
GFDL 10
EC-Earth 2.3 10
IPSL 4
CMCC-CM 1

Table 3: Summary of the information for the different models used in this work. For all the models model the
time period used is 1961-2006.

In order to assess if there is a first order relationship between the mean state and the
biases in the TA, figure 13 shows the different aspects of the simulation of the AtI3 box in the
CMIP5 models (20W-0W, 3S-3N, Rodriguez-Fonseca et al. 2009): seasonal cycle, monthly
standard deviation and bias. This figure shows that most of the models exhibit a large warm
bias in summer (figure 13c) and this is mainly linked with a delayed and too weak
development of the cold tongue in this region (figure 13a and c). Only few models manage to
reproduce the peak of standard deviations during summer in the equatorial Atlantic and the
only model having a correct amplitude of the standard deviation in summer is the bcc
coupled model (Figure 13b and d). It is interesting to note, that this model have a relatively
large bias in the same box (figure 13c), suggesting that there is no clear relation between the
JJA climatological SST in the Atl3 box and the standard deviation. In order to confirm this
hypothesis, figure 13e shows the scatter plot between the JJA SST climatology and the
standard deviation averaged in the AtI3 box. This figure 13e clearly confirms that there is no
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direct relation between the representation of the JJA mean SST and the amplitude of
interannual variability in the Atl3 region. However, if instead of looking at the amplitude of
the bias in the Atl3 region, we look at the strength of the cold tongue development in the
model, in other word the different between July and April SST average in Atl3, a clear
relation appears with the amplitude of the standard deviation (figure 13f). The p-value of
this regression is 0.002, which shows that this relation is significant. This result suggests that
the important parameter for a coupled model to simulate a realistic equatorial Atlantic
variability is to be able to represent a realistic cold tongue development between spring and
summer in this region.

a)Climatology AtI3 b) Standard Deviation AtI3
30 1.0 |
o8 | 0.8 1
0.6
261 0.4
24 B T T T T T T T T T T T T 0'2 L T T T T T T T T T T T T
Jan Mar May Jul Sep Nov Jan Mar May Jul Sep Nov
c)Bias AtI3 d) Error of Standard deviation AtI3
3 0.4
14 0.0 1 ——
= —_— _
_1 A N T T T T T T T T T T _0'4 L T T T T T T T T T T T T
Jan Mar May Jul Sep Nov Jan Mar May Jul Sep Nov
o e) bias vs SD in AtI3 JJA o f) gradient April-July vs SD AtI3 JJUA
S | p.val: 0.11 gfdl S p.val:0.002 ofdl
T mjroc5 1 miroc5 _.----7"
0| FReQE S TTTteeell bce To) bes:--Epeoar
oS JTERYSITTST TR ipi—— miroc S mcpr oo
§ EC-Earth crree= 1 hagergri CMec-cm
- cnrm-cm5 - ...---enrm-cm5
© 42 04 10 16 22 ° % ] 2 3 4

Figure 13: a) Climatological seasonal cycle of the SST averaged in the Atl3 box (20°W0°W-3253°N). b) Standard
deviation in the Atl3 averaged over the different members. c) Difference between CMIP5 coupled model
climatological SST minus climatological observed SST in the Atl3 box. d) Difference Standard deviation in the
AtI3 averaged over the different members minus the observed standard deviation. e) Scatter plot of the relation
between mean bias in JJA in Atl3 (x-axis) and the standard deviation in Atl3 (y-axis). f) Scatter plot of the
relation between the SST in April minus the SST in July in Atl3 (x-axis) and the standard deviation in Atl3 (y-axis).
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3.2 The impact of mean state errors on equatorial Atlantic interannual variability in a
climate model
(Ding et al. 2015a)

Theoretical and observational studies indicate that the mean state has a strong prein
on interannual variability in the Tropical Pacific (Battisti and Hirst, 1989; Fedorov and
Philander, 2001; Lubbecke and McPhaden, 2013). However, it is still not clear what is the
influence of the warm SST bias on the interannual variability in the Equatorial Atlantic given
that some coupled model can capture the Equatorial Mode (EM) or Atlantic Niflo, while
others cannot, as reported in recent studies (Munoz et al., 2012; Liu et al., 2013; Richter et
al., 2014). Here we investigate new climate model configurations to address the following
scientific questions:

* Can simulation of interannual variability be improved in a coupled model if
the mean bias is reduced?

* What are the influences of the SST warm bias on the mechanism of Atlantic
Nino?

We address the questions presented above by investigating a set of experiments
performed with different configurations of the KCM (Kiel Climate Model) with perturbed
parameters and momentum flux correction. Three experiments are performed and analysed:
(1) a reference run using the models standard (like-CMIP5) configuration (REF) with Tropical
Atlantic bias similar to most state-of-the-art climate models; (2) a run that employs
modifications in the physical parameterization of the atmospheric model that mainly
influence the turbulent transfer of heat and moisture at the ocean surface, leading to an
improved simulation of the Atlantic mean state (MOD); and (3) a momentum flux corrected
version of the KCM using its standard configuration (Mflux) that exhibits climatological SST
and thermocline depth variations similar to observations. The three model configurations
are used in this study because they represent Equatorial Atlantic climate to different degrees
of fidelity. More description on the experimental set-up can be found in Ding et al. 2015a.

Mflux is used to assess the impact of (somewhat artificially achieved) near perfect
simulation of the climatology on interannual variability while MOD provides an indication of
the impact of more modest reductions in mean state error. The three model configurations
are compared against observations. In this work we use the HadISST1.1 (Rayner et al. 2003)
data set for observed SSTs and WOAO5 (Locarnini et al. 2006) for subsurface ocean
temperature.

We investigate the BF (Bjerkness feedback) in the three KCM configurations (see figs.
6-8 in Ding et al. 2015a). We show that the three elements of the Bjerknes feedback exist to
some degree in all the three experiments. In the REF, the first (Asst»:) and third (A (5hc )
elements are much weaker than those in MOD and Mflux, consistent with less variance of
the EM in REF. In Mflux, the first element of the BF is slightly stronger than observed, and
much stronger than in MOD. In MOD and Mflux, the second and third elements (A yc>sst) of
the BF resemble each other. The stronger BF in Mflux than in MOD is consistent with the ZM
greater explained in Mflux (figure 5 in Ding et al. 2015a).
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Figure 14: Longitude-time sections of biases of surface zonal winds (contours shown in left), SST (shading shown
in left side) and Z20 (right side) at the equator (averaged between 2S and 2N) calculated from (a and b) REF, (c
and d) MOD, and (e and f) Mflux experiments. The units of surface zonal winds, SST, and Z20 are meters.

Looking now at the seasonality of the equatorial SST variability, Figure 14 shows the
longitude-time sections of seasonal cycle of isotherme-20deg depth (Z20 hereinafter) at the
equator (averaged between 2°S and 2°N) calculated from the three experiments and from
WOAOS. In REF, the mean bias is so large in May and June that the seasonal cycle of Z20 in
the east is almost opposite to that in the observations (figure 14 a and b). The unrealistically
deep thermocline in the east inhibits upwelling of cold water, causing the maximum warm
SST bias during boreal summer (JJA). The seasonal evolution of the bias in REF is consistent
with that in Richter and Xie (2008), as described in Wahl et al. (2009) for the KCM. While the
biases in MOD are somewhat reduced compared with REF, they exhibit similar seasonal
evolution: The seasonal cycle of Z20 is still almost opposite to that in observations (figure 14
a and c). Mflux displays the best phase of the seasonal cycle of Z20 of all the simulations,
with shallower thermocline from June to September in the east (figure 14 a and d).
Nevertheless, the simulated seasonal cycle of Z20 is stronger than observed and some
moderate SST errors remain.

Monthly standard deviations of SST at the equator shows there are also marked
differences in the seasonality of SST variability among the simulations and observations
(figure 15). In observations, the maximum SST variability is in the east from June to July
(figure 15a), as has been reported by many previous studies (Xie and Carton, 2004;
Keenlyside and Latif, 2007; Richter et al., 2014). In REF, SST variability peaks around May, but
the maximum is found in the central Atlantic to the west of the observed maximum (figure
15a and 15b). In MOD and Mflux, SST variability is located mainly in the eastern part of the
Equatorial Atlantic and is more consistent with observations than REF. However, MOD
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simulates maximum SST variability from July to September, about 2 months later than that in
the observations and Mflux. This may be associated with the delayed seasonal cycle of 220
(figure 14c). Mflux has the best simulation in terms of phase, capturing the maximum SST
variability in June and July.
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Figure 15: Longitude-time sections of monthly stratified standard deviation of SST along the equator (averaged
between 2S and 2N) calculated from (a) observation (Rayner et al., 2003), (b) REF run, (c) MOD run, and (d)
Mflux run. The unit is Celsius.

Our results show that Mflux in the best performing KCM configuration to represent
BF and SST interannual variability. In summary, from this study suggest that a better
simulation of interannual variability in the Equatorial Atlantic can be achieved through
improving the mean state in coupled ocean-atmosphere general circulation models. This,
however, is not trivial, because the climate system in the equatorial sector is strongly
coupled, giving rise to a high sensitivity to errors in individual model components so that
biases in different component models and regions could be linked with each other [Wang et
al., 2014]. With respect to seasonal forecasting, momentum flux correction could be an
option, as long as the coupled models suffer from large biases. Nevertheless, as shown here
momentum flux correction cannot fully correct ocean-atmosphere feedbacks.
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