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Sahel rainfall has shown marked decadal variability: Sahel rainfall has shown marked decadal variability: 

Main source of such variability SSTsMain source of such variability SSTs  (Rodriguez-Fonseca et al. 2015, 
and references therein)
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RSI (Martin & Thorncroft)??
AMV, IPO (Gaetani and Mohino 2013; García-Serrano et al. 2015)??

Here we use:
EXTENDEDEXTENDED (1901-2010) MPI-ESM-LR decadal predictions  (1901-2010) MPI-ESM-LR decadal predictions 
((Müller et al. 2014Müller et al. 2014))
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