First insights on the impact of hydrology and currents on the horizontal and vertical distributions of fish and macrozooplankton in the Eastern tropical Atlantic Ocean

Paris, November 29th, 2016

Habasque Jérémie, Boulès Bernard, Machu Eric, Brehmer Patrice, Bertrand Arnaud

jeremie.habasque@ird.fr
Introduction

Physical structures (Ex. thermocline, internal waves, etc.)

Zooplankton layer, identification with Bongo

Squids eat myctophids and krill

Mammals eat squids

Benoit-Bird & Lawson, 2016
Few acoustics data since PICOLO cruises (1997-1998)

Since 2015, data collected during PIRATA cruises

➤ Need to explore these data!
Questions

• Potential influence of the vertical structure (including thermocline, oxycline and peak of fluorescence) on the **vertical patterns** of organisms distribution?

• How ocean features can impact the **horizontal distribution pattern** of fish and zooplankton distribution?
Characterization of water masses:
Thermosalinograph, CTD-O2, nutrients and pigments, SADCP

Ecosystem acoustics:
18, 38, 70, 120, 200, 333 kHz

Plankton net (Bongo 300 µm) from 200 m to the surface (FR26 only)
Acoustic data

Example of a 24h registration

18 kHz

38 kHz

Surface scattering layer

Deep scattering layers

Vertical migration

Global mean acoustic vertical profiles

FR26: 38kHz

Light is a key driver

Night->Black / Sunrise->Yellow / Day->White / Sunset->Red
Sunset and sunrise defined for solar elevation angle between -18° and 18°
Vertical distribution and hydrology

10°S-10°W : ~15h registration (4H-20H) & operations

Acoustic profile night
Acoustic profile day

During day, low oxygen zone is a refuge for hypoxia tolerant species
Regions of interest

Horizontal distribution patterns: mean backscatter of the whole water column at 18kHz

- **2015**
 - Equatorial section
 - 0°N-10°W to Mindelo

- **2016**
 - Main CTD section
 - Congo river plume
Congo river plume impact

120 kHz lateral

18 kHz vertical

Strong water mass signal
⇒ More nutrients
⇒ Fish schools or high zooplankton density near the surface?

In progress:
- Study of zooplankton and phytoplankton samples
- Extraction of fish and zooplankton groups from acoustic data
Equatorial section and upwelling impact

Colder SST and shallower thermocline in 2015
⇒ More nutrients
⇒ Higher acoustic density
Section 0°N-10°W to Mindelo

2015

Echogram at 38kHz

2016

Latitude

Oxygen involved in the change of vertical distribution?
10°W section - Organisms density and environment

Fluorescence

Temperature

Oxygen
Short term perspectives

- More accurate analysis of hydrology/currents impact on organisms distribution
- Seapodym model validation (acoustic data used by CLS in the frame of AtlantOS)
- PIRATA FR27 cruise => if Sargassum banks, potential use of lateral echosounder
- Plankton species identification and organisms classification using multifrequency data

All information about fishes & plankton identification in the area are welcome !!!
Thank you!

Acknowledgements:

This work is also supported by the EU AtlantOS project.
Location: 8°S
Time resolution: 2 min

SADCP 38 kHz - Meridional velocity

EK60 18 kHz
Vertical acoustic density patterns

Vertical distribution patterns

North to 2°N

South to 2°S

Acoustic density weakly stronger in the North tropical Atlantic?

Klevjer, T. A. et al. (2016).
Frequency responses characteristic of different types of organisms

Benoit-Bird and Lawson 2016

À joindre aux perspectives!
Acoustic data collection and processing

R/V THALASSA

Sounder: Simrad EK60

Vertical

<table>
<thead>
<tr>
<th>Frequency (kHz)</th>
<th>Range (meters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>1000</td>
</tr>
<tr>
<td>38</td>
<td>800</td>
</tr>
<tr>
<td>70</td>
<td>400</td>
</tr>
<tr>
<td>120</td>
<td>250</td>
</tr>
<tr>
<td>200</td>
<td>120</td>
</tr>
<tr>
<td>333</td>
<td>80</td>
</tr>
</tbody>
</table>

Lateral (FR26 only)

<table>
<thead>
<tr>
<th>Frequency (kHz)</th>
<th>Range (meters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>250</td>
</tr>
</tbody>
</table>

1 ping each 3 seconds = 20 meters
Sampling resolution: 20 cm
Sampling starts at 6 meters depth

Data processing

Acoustic data were echo-integrated onto 1 m layers over 0.1 nmi ESDU (elementary sampling distance unit)

Threshold: -100 dB
Range: 9 m (i.e. transducer depth + offset) down to 1000 m depth.

Threshold: -100 dB
Range: 20 m to 250 m.
FR26 - Map of sampling locations

Bongo net (300 µm) from 200 m to the surface
Trophic food web

Phytoplankton → Copepods → Euphausiids → Myctophiids → Amphipods → Sternoptyx
Phytoplankton

Light, circulation, temperature, nutrients

Copepods

Euphausiids

Myctophiids

Amphipods

Sternoptyx

Cephalopods

Tuna

Small fish

Wahoo

Mahi-mahi
Migration nyctémérale visible sur les données ADCP OS150

Le courant structure-t-il la distribution des communautés ?

Voir avec Bernard/Gaëlle
Vertical distribution patterns and hydrology

CTD station at 12°N-23°W

Relative frequency response curve

Different sizes of Myctophids?

Ajouter échelle?
- High Deep Scattering Layers (400-600m) densities at 38 kHz during daytime correspond to anticyclonic eddies?

Source: AVISO
intégrations globales sur 1000 m (18 kHz) et 800 m (38 kHz)

Pour PIRATA FR25, les ratios sont :
- 18 kHz : 1.38
- 38 kHz : 1.39

Les ratios sont un peu plus faibles sur PIRATA FR26,
- 18 kHz : 1.29
- 38 kHz : 1.13

Donc il y a sans doute des migrations d'organismes venant de plus profond que 1000 m ?

Problème de TVG mal compensée de jour ?

Orientation des poissons (tilt angle) en vertical de jour ?