Predictability of malaria parameters in Sahel under the S4CAST Model

28th November – 1st December 2016, UPMC, Paris, France

Presented by: Ibrahima DIOUF

Literature has shown that climate is an important factor on malaria development, a vector-borne disease which is public health problem, particularly in Sub-Saharan Africa.

- **We explore the malaria outbreaks predictability over Sahel from previous SSTs.**
 - The findings are highlighted by the S4CAST model. The S4CAST model based on the leading MCA covariability mode has been developed in order to evaluate and quantify the predictability of different variables in the relationship with SST.
 - The SST may be considered as a source of predictability due to its direct influence on rainfall and temperature, and also others related variables like malaria.
 - Malaria simulations driven by meteorological data and reanalysis data sets are carried out. Simulated malaria parameters are compared with observed malaria data.
Area of study

The Ferlo is a sylvopastoral region, with a most sahelian climate conditions.

Map showing locations of the stations used in this study. The study is extend to the Sahel region for the seasonal malaria predictability using the S4CAST model.
Climate and malaria relationship

Pathogen agent: plasmodium

Vector of transmission: anopheles

Host: human

Precipitations
Temperatures
Humidity

Climate parameters can influence malaria transmission by tree (3) transmission: 1) distribution and abundance anopheles vectors, 2) possibility and success of the sporogonic cycle of the parasite inside the vector, 3) and then the modulation of human-vector (Lindsay et al, 1996)

Combinaison of socio-economic, environmental and climate factors of malaria transmission
Data and Method

Malaria observation

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Period</th>
<th>Stations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malaria cases and prevalence</td>
<td>2000-2009</td>
<td></td>
</tr>
</tbody>
</table>

Observation Inputs (rainfall and temperature)

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Period</th>
<th>S-Louis (Slouis)</th>
<th>Linguere (Ling)</th>
<th>Dakar (Dak)</th>
<th>Kaolack (Kaol)</th>
<th>Tambacounda (Tamba)</th>
<th>Ziguinchor (Zig)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meteorological data</td>
<td>1973-2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reanalysis inputs (rainfall and temperature)

<table>
<thead>
<tr>
<th>Datasets</th>
<th>Period</th>
<th>Grid</th>
<th>Sources/References</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 Century Reanalysis Project daily averages</td>
<td>1910-2009</td>
<td>2.5 x 2.5</td>
<td>NOAA/Compo GP (2011)</td>
</tr>
<tr>
<td>NCEP</td>
<td>1960-2009</td>
<td>2.5 x 2.5</td>
<td>NOAA/Kalnay E, (1996)</td>
</tr>
<tr>
<td>ERA40</td>
<td>1958-2001</td>
<td>2.5 x 2.5</td>
<td>CEPMMT/Uppala (2005)</td>
</tr>
<tr>
<td>ERA Interim</td>
<td>1979-2013</td>
<td>1.5 x 1.5</td>
<td>CEPMMT/Simmons(2007)</td>
</tr>
</tbody>
</table>

Classification of dataset, period of study and considered stations
Data and Method

Different sources of data and the processing

Inputs
- 20th Century (1901-2010)
- NCEP (1948-2010)
- ERA 40 (1959-2001)
- ERA Interim (1979-2010)
- Meteorological stations data (1973-2006)

Outputs
- SST and malaria patterns using SVD method (MCA)
- Correlations and regressions between SST and malaria indices
- Predictability under the S4CAST model (main work)

Analysis of spatio-temporal variability of climate parameters, simulated malaria parameters and observed malaria and

PNLP
- Observed malaria cases
- Prevalence from PNLP (all population range screened, 2000-2009)

RUN LMM

INCIDENCE
- EIR
- HBR
- Nm

Outputs DMC
Data and Method

SST-malaria relations with SVD (MCA)

MATERIALS AND METHODS

PREDICTOR: X

- ATL & PAC SST (lagged)

PREDICTANT: Y

- Sahel
- EIR_son
- HBR_son
- Incidence_son
- Nm_aso

MATRICE DE COVARIANCE

\[C = Y^*X^T \]

COEFFICIENT D’EXPANSION

PATTERNS SPATIAL

- SSTs ATL & PAC
- Malaria Sahel
DMC (The LMM interface)

Spatio-temporelles Simulations OF MALARIA INCIDENCE IN Senegal using the DMC (LMM interface)

Click on a month of the time series to see the corresponding spatial distribution

Cliquen un point pour afficher les séries chronologiques correspondantes
S4CAST MODEL (Version V2.0)

Developed in the framework of a cooperation project between UCAD & UCM to study predictability of AO precipitations

Schematic diagram illustrating the structure of the S4CAST model (Suárez-Moreno et Rodríguez-Fonseca, 2015)
For the Atlantic, a warming in the tropical region is linked with less incidence over the north-western part of Sahel and high incidence over its south-western part.

For the Pacific, a warming is related to less incidence in Sahel but a little more incidence in the South.

Tropical Atlantic influence and tropical Pacific influence.
RELATIONS BETWEEN SST AND SEASONAL MALARIA INCIDENCE IN SAHEL

20-year running correlation between malaria incidence SON index in Sahel and SST index over Pacific (a) and Atlantic b) from lag 0 to lag 5.
21 years moving window correlation (Green line) between the expansion coefficients U (SST, blue bars) and V (incidence, red line) from the leading mode of co-variability between the two anomalous fields. Shaded triangles indicates significant correlation under a Montecarlo Test at 90%.
RELATIONS BETWEEN SST AND SEASONAL MALARIA INCIDENCE IN SAHEL

SST regression map for the leading mode of co-variability for the non-stationarity periods and lag 5, and malaria incidence regression map for the leading mode of co-variability for the non-stationarity periods and lag 5
RELATIONS BETWEEN SST AND SEASONAL MALARIA INCIDENCE IN SAHEL

SST regression map for the leading mode of co-variability for the non-stationarity periods and lag 5, and
15b) malaria incidence regression map for the leading mode of co-variability for the non-stationarity periods and lag 5
RELATIONS BETWEEN SST AND SEASONAL MALARIA INCIDENCE IN SAHEl

Spatial validation of the hindcast in terms of the significant correlation between observed and modelled malaria incidence
Conclusions and Perspectives

- Less malaria transmission over Sahel seems to be related to a warming over the Pacific, that would be a coherent result with what shown on SSTs Pacific and Sahelian rainfall. The contribution of the Atlantic basin is also interesting to be taken account.

- A deep analysis of the indirect influence of ocean conditions on malaria is needed for applicability of the S4CAST on malaria using it´s recent version.

- The S4CAST model is presented as a tool to enhance and complement existing dynamical prediction models.

- Results could provide a good support tool for decision-makers in the framework of malaria prevention.
THANK YOU FOR YOUR ATTENTION