ECERFACS

CENTRE EUROPÉEN DE RECHERCHE ET DE FORMATION AVANCÉE EN CALCUL SCIENTIFIQUE

Future Sahelian rainfall projections and selection of a sub-ensemble of CMIP5 models for impact studies

Monerie Paul-Arthur, Sanchez-Gomez Emilia, Boé Julien CERFACS/CNRS

PREFACE general assembly – August 2015, Cape Town

The recent rainfall recovery in West Africa

Sahel

The Standardised Precipitation Index (SPI) and its 11-year running mean, between 1921 and 2010.

The recent rainfall recovery in West Africa

The August-October period exhibits the largest rainfall recovery in the Sahel.

The date of the retreat of the rainy season significantly moved later.

The monthly rainfall trends (in mm decade-1; left axis) and their percentage contribution to the annual trends (in%, right axis). 1980-2010.

In the future ?

CERFACS

CNrS

The west African monsoon projections remain however uncertain due to a large inter-model spread

Is this due to the model biases ? or to the considered period or/and domain ?

Aims of this study

- What are the main Sahel rainfall responses in CMIP5 models ?

- Is there any relationship between the model response regarding to global warming and the mean model biases ?

- Can we define a sub-ensemble of models, representative of the uncertainty generated by the models from CMIP5 ?

Aims of this study

- What are the main Sahel rainfall responses in CMIP5 models ?
- Is there any relationship between the model response regarding to global warming and the mean model biases ?
- Can we define a sub-ensemble of models, representative of the uncertainty generated by the models from CMIP5 ?

Aims of this study

- What are the main Sahel rainfall responses in CMIP5 models ?
- Is there any relationship between the model response regarding to global warming and the mean model biases ?
- Can we define a sub-ensemble of models, representative of the uncertainty generated by the models from CMIP5 ?

Data and methodology

32 CMIP5 models, interpolated into the same 2.5°x2.5°resolution

CTRL period : 1960-1999 using the historical scenario FTR period : 2060-2099 under the rcp8.5 emission scenario

The climate change impact on the monsoon is evaluated by $\Delta pr = prFTR - prCTRL$

A consensus on the multi-model anomalies is considered as robust when at least 80% of the models agree on the sign of the change.

CERFACS

Data and methodology

The classification of the models is computed by the pattern correlation of Δpr over the Sahel

Models are classified into 4 groups

The models originating from the same climate centre show close projections

Results : Precipitation change

Projected changes in JAS for (a-d) precipitation (mm.day-1). Hatching represents the grid-points where at least 80% of the models agree with the ensemble mean computed from all the available models.

Results : tas, ps and wind changes

The 4 groups of models project a strengthening of the gradient of temperature between the Sahara and the Gulf of guinea

GR1 and GR3 project a warmer Saharan desert than GR2 and GR4 along with an increase in precipitation.

Projected changes for (a-d) ⁰/₂m temperature (°C) (shading), sea level pressure (hPa) (blue contours) and 950 hPa winds (m.s-1) (green arrows). The winds anomalies are displayed if at least 80% of the models agree on the signals. Hatching represents the grid-points where at least 80% of the models agree with the ensemble mean computed from all the available models

Results : Seasonal cycle

-2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.8

Time-Latitude diagram from January to December and averaged from (a-d) 20°West to 0° of projected and 0° to 20°East (e-h) rainfall amounts (mm.day-1). The monthly mean CTRL climate is displayed with red contours and the FTR-CTRL anomalies in colors. The hatching represents the grid-points where at least 80% of the models are agreed with the ensemble mean FTR-CTRL change.

Results : Seasonal cycle

-2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.8

3 groups of models simulate a decrease (increase) in precipitation

over the Western (central) Sahel \rightarrow not homogeneous

Results : Biases-projection relationship

Same pattern of bias in precipitation:

- Wet biases over the gulf of Guinea
 - Dry biases of the Sahel
- \rightarrow The monsoon system is located too southward

Mean bias of (a-d) rainfall amounts (model output minus GPCP; mm.day-1) in color and mean JAS precipitation of GPCP (red lines). The hatching represents the grid-points where at least 80% of the models are agreed with the sign of the bias.

Results : Biases-projection relationship

Surface-air temperature (CTRL – era-interim; JAS 1979-1999)

Mean bias of (a-d) surface-air temperature (model outputs minus era-interim, °C) in color and mean JAS temperature of era-interim (red lines). The hatching represents the grid-points where at least 80% of the models are agreed with the sign of the bias.

- There is no relationship between the mean biases and the projections -> The model selection is thus performed on δpr

- There is no relationship between the mean biases and the projections -> The model selection is thus performed on δpr
 - The aim is to define a sub-ensemble of models, which is representative of the uncertainty generated by the whole ensemble of CMIP5 models

- There is no relationship between the mean biases and the projections -> The model selection is thus performed on δpr

The aim is to define a sub-ensemble of models, which is representative of the uncertainty generated by the whole ensemble of CMIP5 models

3 methods are proposed

"non-a-priori" method

Randomly selection of 4 models in the CMIP5 data-set

- There is no relationship between the mean biases and the projections -> The model selection is thus performed on δpr

The aim is to define a sub-ensemble of models, which is representative of the uncertainty generated by the whole ensemble of CMIP5 models

3 methods are proposed

"non-a-priori" method

"pattern" method

Randomly selection of 4 models in the CMIP5 data-set Random selection of 4 models in GR3

- There is no relationship between the mean biases and the projections -> The model selection is thus performed on δpr

The aim is to define a sub-ensemble of models, which is representative of the uncertainty generated by the whole ensemble of CMIP5 models

3 methods are proposed

"non-a-priori" method	"pattern" method	"diversity" method
Randomly selection of 4 models in the CMIP5 data-set	Random selection of 4 models in GR3	Random select of 1 model per group of models

- There is no relationship between the mean biases and the projections -> The model selection is thus performed on δpr

The aim is to define a sub-ensemble of models, which is representative of the uncertainty generated by the whole ensemble of CMIP5 models

3 methods are proposed

"non-a-priori" method	"pattern" method	"diversity" method
Randomly selection of 4 models in the CMIP5 data-set	Random selection of 4 models in GR3	Random select of 1 model per group of models

The operation is repeated 30 000 times using a Monte-Carlo approach

(a-c) Mean FTR-CTRL rainfall changes (mm.day-1) from the 30 CMIP5 models and probability to reproduce it (most-likely when the hatching are added). The probability is computed by a Monte-Carlo procedure and judged most-likely when 95% of the mean FTR-CTRL change of the 30 000 draws is of a same sign as the CMIP5 multi-model change.

Conclusion

- Δpr exhibits a strong spread, ranging from an increase to a decrease in precipitation
- The increase of rainfall in late monsoon is the most robust projection
- No relationship between the mean biases and the projections
- A methodology is defined in order to use a sub-sample of CMIP5 models for impact studies.

Thank you for your attention

