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Contribution to project objectives – with this deliverable, the project has contributed to the 

achievement of the following objectives (from Annex I / DOW, Section B1.1.): 

N.º Objective Yes No 

1 

Reduce uncertainties in our knowledge of the functioning of Tropical Atlantic (TA) 
climate, particularly climate-related ocean processes (including stratification) and 
dynamics, coupled ocean, atmosphere, and land interactions; and internal and 
externally forced climate variability. 

X  

2 
Better understand the impact of model systematic error and its reduction on 
seasonal-to-decadal climate predictions and on climate change projections. 

X  

3 

Improve the simulation and prediction TA climate on seasonal and longer time 
scales, and contribute to better quantification of climate change impacts in the 
region. 

  

4 

Improve understanding of the cumulative effects of the multiple stressors of 
climate variability, greenhouse-gas induced climate change (including warming and 
deoxygenation), and fisheries on marine ecosystems, functional diversity, and 
ecosystem services (e.g., fisheries) in the TA. 

  

5 

Assess the socio-economic vulnerabilities and evaluate the resilience of the 
welfare of West African fishing communities to climate-driven ecosystem shifts 
and global markets. 

  

 

Author(s) of this deliverable: Angelo Rubino, Carlo Gaetan, Davide Zanchettin, Maeregu Woldeyes 
Arisido, Jorge Lopez Parages 

Deviation from planned efforts for this deliverable: none to our knowledge. 

Report 

Executive Summary: WP10: “Statistical methods to assess and improve forecast of Tropical Atlantic 
variability” aims at (1) developing a Bayesian hierarchical modeling strategy to re-calibrate forecasts 
and improve prediction of Tropical Atlantic variability (TAV) and its impact, (2) developing a statistical 
scheme to predict sea surface temperature (SST) anomalies in remote regions associated with TAV, 
and (3) assessing the ability of state-of-the-art climate models (CMIP5) to reproduce climate 
variations over the Tropical Atlantic Sector (including surrounding continents) over the 20th century. 
To the first purpose, Bayesian hierarchical modeling strategies are being developed and used at the 
University of Venice to improve TAV predictions and re-calibrate simulated data for bringing them 
into line with measurements. The main theoretical advantage of a Bayesian strategy is that it 
encapsulates the uncertainties involved in the estimation of all model parameters and these 
uncertainties are properly taken into account in the predictions and re-calibrations. This deliverable 
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presents the status of the work progress concerning the development of the general Bayesian 
methodology to improve TAV prediction, identify sources of heterogeneity and non-stationarity of 
simulated TAV features, and to unify different spatial-temporal dependences, including fronts and 
shifts, into a unique statistical framework (Task 10.1). Specifically, two branches of the model’s 
development have been pursued, which target different components of the issue: the first branch is 
focused on estimation of the temporal component of systematic model errors, using the evolution of 
SST drifts in the Tropical Atlantic region from decadal climate predictions as a test bed and case 
study; the second branch is focused on the spatial assessment of the bias in a multi-model ensemble, 
using near-surface air temperatures over the Tropical Atlantic region from CMIP5 historical 
simulations as test bed. The latter model also contributes to Task 10.2. This deliverable further 
includes R code used to deal with the spatial misalignment between observational and model data, 
or by the scarceness/incompleteness of observations (Task 10.4). The proposed strategy optimizes 
the one-way rescaling between numerical climate model outputs, provided on the original model 
grid, and grid/point observations. 

The present document consists of three main sections: 
1 – Review of scientific literature on hierarchical Bayesian approach-based work in the field of 
climatology 

2 – Report on the Bayesian hierarchical model 
3 – Description of statistical models for spatial misalignment 
 
 
1 – Review of scientific literature on hierarchical Bayesian approach-based work in the field of 
climatology 

Bayesian hierarchical models (BHMs) use Bayes’ theorem to incorporate information from different 
sources, including observations, physical theories and experts’ knowledge. They provide a flexible 
framework to developing consistent inference and prediction of unknown quantities under study, 
which overcomes single-value predictions in the assessment of uncertainty. 

The idea of hierarchical modeling of scientific processes largely stems from the work of Berliner 
(1996), who, in a period of fast development and popularization of Markov Chain Monte Carlo 
(MCMC) methods in Bayesian statistics, proposed BHMs as a probabilistically consistent way to 
partition uncertainty in systems with complicated data, process and parameter relationships. Wikle 
et al. (2013) provide a recent review on the development of the hierarchical model paradigm in the 
field of natural sciences, with a special focus on oceanography, and illustrates how the Bayesian 
approach surpasses, in certain aspects, likelihood-based inferences. For instance, given the 
complexity of most ocean and atmospheric processes, the multivariate spatio-temporal dependence 
structures associated with the unobserved geophysical process of interest can be very complicated, 
including nonlinear temporal behavior and nonstationary in spatial and/or temporal features, and 
potentially very high-dimensional: In a likelihood-based approach the bulk of such possibly 
complicated dependence structures must be realistically specified in the statistical model; in a 
hierarchical approach, focus is on the unobserved process of interest directly, whose modeling can 
therefore directly incorporate insights about it, such as Markovian approximations of it (like in 
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dynamic linear models), or more complex mathematical representations of it (like simpler 
approximations of the laws of fluid-dynamics, or of spatio-temporal characteristics). A hierarchical 
approach further disentangles the measurement uncertainty from the process uncertainty and co-
variability. 

The BHM general formulation is based on three building blocks: the data model, the process model 
and the parameter model. Suppose that Z represents the data, Y represents the process and Ɵ 
represents the parameters related to the data or the process model, we then have: 

(a) Data model, [Z|Y,Ɵ] 

(b) Process model, [Y|Ɵ] 

(c) Parameter model, [Ɵ] 

 where [A] is the generic notation for the (conditional) probability distribution of the random 
quantity A. In practice, (a) defines the statistical model representing the dependence of observations 
on the unknown process, (b) describes the conditional probability distribution of the process on the 
model parameters, and (c) describes the (prior) probability distribution of the parameters, which are 
treated as random quantities according to the Bayesian approach. 

BHMs provide estimates of the unknowns (Y and Ɵ) with associated uncertainty through the 
calculation of their posterior distribution conditioned to available observations, which is allowed by 
the Bayes’ theorem: 

[Y,Ɵ|Z] =[Z|Y] [Y|Ɵ] [Ɵ] / [Z]       (1.1) 

The major difficulty in evaluating (1.1) relies on the computation of the predictive distribution [Z] 
that can be circumvented by means of a MCMC method (Robert and Casella, 2004). 

Scientific literature entails numerous studies describing the application of BHMs in the field of 
climate science, especially to the assessment of climate model outputs and to paleoclimate 
reconstructions. We propose in the following a critical review of selected contributions, focusing on 
those that are most relevant for PREFACE WP10. Additional reviews of scientific literature about 
statistical models to combine climate model output can be found in Tebaldi and Knutti (2007), and 
Smith et al. (2009). Giorgi and Mearns (2002), Christensen et al. (2010), Knutti et al. (2010), and 
Knutti (2010) provide additional methodological approaches and discussions on the topic. 

Several studies have contributed to establish the Baysian framework as attractive for combining 
information from different climate models (so-called multi-model ensembles): It decomposes the 
complicated relationship between the observations and the outputs of different models into simpler, 
hierarchical relationships that can be described in a reasonable and transparent way. Scientific work 
proposing statistical approaches for combining climate model output in the context of a Bayesian 
hierarchical model include both studies assuming independence among ensemble members (e.g., 
Tebaldi et al., 2005; Furrer et al., 2007; Smith et al., 2009; Tebaldi and Sanso, 2009; Kang et al., 2012) 
or explicitly accounting for model-to-model correlation (Sain and Furrer, 2009; Sang et al., 2011). 
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Tebaldi et al. (2005) were among the first to use the Bayesian framework for analysing multi-model 
ensembles. They proposed a Bayesian statistical model to combine information from a multi-model 
ensemble of coupled climate model simulations and observations to determine probability 
distributions of future temperature change on a regional scale. The aim was to produce probabilistic 
forecast of climate change that surpassed the reliability ensemble averaging method for multi-model 
evaluation that consists, essentially, of a weighted average of the individual model output, where the 
weights measure the criteria of model bias (with respect to observed climate) and convergence (with 
respect to projected climate change) implicitly assigned to the ensemble members. The study thus 
provided the first step from a heuristic criterion to a formal statistical model for climate model 
evaluation. Tebaldi et al. (2005) adopted uninformative prior distributions for their study focused on 
regional temperatures, and demonstrated that their model produced meaningful posterior 
distributions: The probability distributions of temperature change revealed features such as 
multimodality and long tails that could not otherwise be easily discerned. 

The work by Tebaldi et al. (2005) has been generalized in several directions. Buser et al. (2009) 
extended the work by Tebaldi et al. (2005) by considering not only the long-term climate mean, but 
also the interannual variations, further accounting for possible nonstationarity of the data in the 
control and scenario periods. Their Bayesian model was also used to investigate the impacts of two 
different assumptions for extrapolating bias from the control period to the scenario simulations. 
First, they assumed that bias changes are negligible compared to climate change, or equivalently that 
the bias itself is time-invariant, therefore calling this assumption "constant bias" (see also the critical 
review of this assumption by Maraun, 2012). Then, they alternatively assumed that biases depend 
(linearly) on the underlying climate and thus change with time, calling this assumption "constant 
relation". Furthermore, based on the substantial biases they identified in interannual variability for 
various regional climate models they also argued that the same models would inaccurately estimate 
a future warming. The model suffered from intrinsic identifiability problem, as the data did not allow 
a clear separation between bias changes and climate changes, thereby requiring additional 
assumptions: specifically the identifiability problem was resolved by using informative priors for the 
bias changes. The results of an application to Alpine seasonal temperatures demonstrated that 
different, plausible assumptions about the bias (constant bias versus constant relation) can lead to 
substantially different estimates of future values for the climatic variable of interest. The work by 
Buser et al. (2009) have been further extended in several directions, for instance Ho et al. (2012) 
discuss two bias assumptions and their influence on future projections of European temperature. 

Furrer et al. (2007) propose a BHM to combine current climate observations and simulations, as well 
as future climate projections, defining climate change as a spatial process on the sphere. Their model 
separates the spatial response into a large scale climate change signal and an isotropic process 
representing small scale variability across climate models. The formulation of their model illustrates 
the general methodology and basic spatial elements of the problem of assessing ensemble climate 
model outputs on spatial fields, which is relevant for the BHM developed within PREFACE WP10. We 
therefore briefly summarize it here. 

Climate change in model i =1, …,N within the ensemble, is defined, in the different grid points of the 
model domain, as Di = Yi – Xi, where Xi and Yi are current and future scenario average climate, 
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respectively. The BHM is then built on the statistical regression model: Di = Mθi + εi, where M is a 
matrix of spatial basis functions, θi is a vector of coefficients describing a random effect that is 
different for each model but whose expected value is the true difference in climate, and εi is a mean 
zero spatial process. The flexibility of this spatial random effects model allows for more general 
applications, such as that to assessing climate model biases as done within PREFACE WP10. At the 
data level, the BHM by Furrer et al. (2007) models Di as a spatial process, specifically based on the 
assumption that the climate change is an additive decomposition of a large scale climate signal and 
small scale signals consisting of model bias and internal model variability: 

Di = μi + εi, [Di | μi, ϕi ] ~(iid) Nn(μi, ϕiΣ), ϕi > 0, i=1,...,N     (1.2) 

where | means “conditioned on”, Nn indicates an n-dimensional normal density, Σ is the correlation 
matrix, and ϕi are scale parameters. The formulation above states that the density of the entire 
dataset, conditional on μi and ϕi, is the product of N Gaussian density functions dictated by Nn(μi, 
ϕiΣ). A similar separation is performed in the BHM developed within PREFACE WP10. 

At the process level, the BHM reduces the high-dimensional large-scale signal by imposing μi= Mθi, 
where M contains p<<N basis functions. Further, assuming that climate models depart from the true 
large-scale climate change pattern ϑ with covariance ΨiΩ, and that the ensemble overall does not 
exhibit systematic large scale errors, it is posed: 

[θi | ϑ, Ψi ] ~(iid) Np(ϑ, ΨiΩ), Ψi > 0, i=1,...,N      (1.3) 

where Ψi captures the different levels of bias and internal variability across the ensemble members. 
A similar decomposition is performed in the BHM developed within PREFACE WP10. At the 
parameters level, priors are defined for the unknowns, namely Ψi, ϕi, and ϑ. The work by Furrer et al. 
(2007) appears relevant also for their assessment of different choices about the basis functions, 
including spherical harmonics and indicator basis functions, and about the assumption of isotropy 
and stationarity of the error spatial process εi. The number of basis functions is the most critical 
parameter identified by Furrer et al. (2007): a richer basis will capture more small scale features as ϑ, 
while leaving less for the small scale component εi. The authors also demonstrated that the 
sensitivity to the number of basis functions increases for regional analyses on a subset of the spatial 
domain. Similar criticalities have been found and addressed in PREFACE WP10 (see section 2.4). 

Jun et al. (2008) employed a nonstationary spatial process model to evaluate the bias of each climate 
model within a 20-member multi-model ensemble with contributing to the fourth assessment report 
of the Intergovernmental Panel on Climate Change, and used kernel smoothing to estimate the 
correlations of biases across the different climate models. They found that most of the climate model 
bias patterns are correlated. In particular, climate models developed by the same institution have 
highly correlated biases. They also found evidence that the model skills for simulating the mean 
climate and simulating the warming trends are not strongly related. Despite Jun et al. (2008) do not 
follow a Bayesian approach (they use instead maximum likelihood estimates), their study is relevant 
here as it surpassed the assumptions that each climate model is independent from the others and is 
a random sample from a distribution with the true climate as its mean. This so-called truth-centered 
approach implies that the average of a set of models converges to the true climate as more and more 
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models are added. The model bias D is defined as a process in space and time, and decomposed as 
Di(s,t) = bi(s) + ui(s,t), where bi is a purely spatial field with possibly nonstationary covariance 
structure and represents the bias of the ith model with respect to the observed climate, and the 
residual ui has zero mean and is assumed to be independent of bi, and describes measurement errors 
as well as simulated climate variability. The spatial field bi is modeled as a Gaussian random field with 
a mean structure depending on several covariates, including latitude (L), altitude (A) and a stochastic 
nonstationary zero-mean Gaussian process ai: 

bi = μ0i + μ1iL(s) +μ2i1(s∈land) +μ3iA(s) +ai(s)      (1.4) 

As a focus of their study, Jun et al. (2008) investigate the correlation between biases in different 
models, which poses the need to jointly model the cross-covariances σij(s) = cov{ai(s), aj(s)}. To fill this 
need, a kernel smoother is applied to the statistics 

D˜ij(s) = σij(s) + εij(s)         (1.5) 

where εij(s) is a spatial process with zero mean. Then, a positive definite Gaussian kernel estimator is 
applied to σij(s). 

Neeley et al. (2014) propose a spatial confirmatory factor analysis (FCA) model to combine the 
output of multiple climate models within an ensemble and characterize modes of similarity among 
the ensemble members. Despite not focused on model bias, the model of Neeley et al. (2014) is 
relevant in this review as it uses both Bayesian and spatial methods to estimate a common climate 
factor and model-specific, spatially correlated factor loadings for each ensemble member indicating 
the degree of agreement for each member with the common climate factor. Application of the 
statistical model to the ensemble of regional climate models participating to the North American 
Regional Climate Change Assessment Program demonstrated how the proposed approach allows 
identifying areas of disagreement between the different models, hence areas where no suitable 
consensus can be obtained. 

In the FCA model by Neeley et al. (2014), climate is considered as a latent variable common to all 
models, i.e., which underlies the output of each climate model in the ensemble. FCA is different from 
an (optimal) weighted mean approach as those described above, as FCA extracts the features that 
the ensemble members have most in common (i.e., the consensus process) while down-weighting 
the features of divergent members, whereas the weighted average method gives the most weight to 
ensemble members with unique values. The identified factor process does not necessarily 
correspond to the actual climate process of interest; it represents instead an ensemble consensus 
view of the process. 

The one-factor CFA model for grid-point i is written in Neeley et al. (20014) as: 

yij = λij δi + εij          (1.6) 

where δi is the factor score in i (representing the consensus), λij is the factor loading for the jth model 
in i, and εij is a Gaussian error ~N(0,σ2

j). Neeley et al. (2014) express the spatial factor model in a 
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matrix form, and build it hierarchically with three levels, including likelihood (data), spatial structure 
of the factor loadings (process) and parameters. 

Some methods, including that followed by Salazar et al. (2011), reduce the parameter space using 
eigenvalue decomposition, or a similar approach, to aid with computability. 

The Bayesian framework has also been followed in a number of studies dealing with the forecast of a 
variety of geophysical systems (for a background on this application of BHMs, see Berliner et al., 
2003). Milliff et al. (2011) present one of the latest steps in adapting BHM to large state-space 
systems with relatively abundant, multi-platform observations and process models motivated by 
geophysical fluid dynamics, and have demonstrated that the BHM methodology is viable in the 
operational ensemble ocean forecast setting. Specifically, Milliff et al. (2011) developed a BHM to 
estimate surface vector wind fields and associated uncertainties, to be used as forcing input data in 
the assimilation step of an ocean forecast system for the Mediterranean Sea. The operational 
application of a BHM strategy in the field of data assimilation for weather/ocean/climate forecasting 
systems must face the large volume of the employed datasets and high physical sophistication in the 
design of the model at the process level (see, e.g., compare the increasing complexity in Royle et al., 
1998; Wickle et al., 2001; Milliff et al., 2011). Milliff et al. (2011) review the use of problem-specific 
assumptions driven by, e.g., data availability, process-model approximations and feasibility of 
implementation. The paper highlights how the BHM formalism renders explicit the assumptions 
regarding different levels of the BHM, such as the data level (e.g., the error properties of 
observations), the process level (e.g., the employed approximate physics) and the overall Bayesian 
solution procedures. 

In brief, the BHM in Milliff et al. (2011) is built as follows: Let W be a vector of surface vector wind for 
all model grid locations and every input time within an assimilation cycle and let [W] be the 
probability distribution of the realizations of W. The properties of [W] can be used to quantify the 
best estimates of the surface vector wind and their uncertainties. The estimates and uncertainties in 
W are functions of relevant observations D and prior estimates or models for the surface vector 
wind. The posterior distribution for the surface vector winds, given data, is given by Bayes’ theorem, 
following (1.1): 

[W, θd, θp | D] ∝ [D | W, θd] [W | θp] [θp, θd]      (1.7) 

where the three terms on the right are the model hierarchies to be described through the BHM: the 
data level [D | W, θd], the process level [W | θp], and the parameters level [θp, θd]. In this general 
formulation, measurement error models and/or retrieval algorithms are parameterized in [θd], while 
[θp] contains parameterizations of the process, necessary to determine the prior information. 

The model of Milliff et al. (2011) further increases the complexity of the individual levels, for instance 
including an additional data-stage distribution upon that for the surface vector wind for sea-level 
pressure observations. The process model includes a geostrophic–ageostrophic partition of the 
surface vector wind with an explicit treatment of surface friction effects through the Rayleigh friction 
equations. The latter are implemented in the Bayesian model in a way that the zonal and meridional 
velocity components do not depend on each other, which is achieved through including sea-level 
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pressure spatial pattern terms. The stochastic and discrete form of the system equations in the 
process model is: 

Ut = a1,1DyPt + a1,2DxPt + εu,t 

Vt = b1,1DxPt + b1,2DyPt + εv,t        (1.8) 

Where Ut and Vt are the discrete estimate of the vectorized zonal and meridional velocity 
components at time t, D and P are discrete operators for the spatial derivatives, and ε indicates a 
random error vector expressing the process model uncertainty. 

The stochastic form of the sea-level pressure anomaly P decomposition is: 

Pt(x,y) = μ + Σk=1..N αk,t φk(x,y)        (1.9) 

where μ is the mean sea level pressure and φk(x, y), k=1…N are spatial structure functions. 

The last layer in the hierarchy of the model prescribes the probability distributions of the random 
coefficients or associated hyperparameters entering the data and process model equations, including 
a1,1, a1,2, b1,1, b1,2, αk,t. The distribution specification for the error terms ε comprises a spatially 
structured part consisting of wavelet bases weighted by random coefficient (whose formulation is 
similar to the spatial decomposition followed in the BHM developed within PREFACE WP10), and a 
Gaussian noise part. This exemplifies how knowledge about the process under study, including the 
properties of its error, can be implemented in the BHM framework in a transparent way. 

Wikle et al. (2013) present a recent review on hierarchical statistical approaches in the field of 
oceanography, particularly focused on the use of BHM for identification, quantification and 
management of uncertainty in data and models of ocean processes. The review spans different 
applications of BHMs, including data assimilation and inverse modeling, and long-term forecasting. 

BHMs have been receiving increasing attention also by the paleoclimate community interested in 
reconstructing climate state and variability before the instrumental period. The paleoclimatic 
reconstruction problem consists of inferring a target, latent climate process in both space and time 
conditional on the (incomplete) observed instrumental and proxy time series and other available 
covariates. Instrumental and proxy data typically have different uncertainties, relate differently with 
the target climate process, and display different spatial and temporal dependencies. The 
paleoclimatic reconstruction problem is therefore naturally suited for the Bayesian approach as a 
unifying, hierarchical space-time modeling framework. 

Tingley et al. (2012) review reconstruction methods focused on Bayesian inference that are currently 
favored by paleo-climatologists, focusing on hierarchical statistical models and describing how the 
different levels should be specified to the purpose of modeling a space-time process and inferring it 
from a number of different noisy and incomplete data sources. The review provides key 
specifications of the proposed hierarchical statistical space-time models, including the space-time 
structure of the target climate process and the relationships between the statistical processes 
characterizing the data sources and the target process. The hierarchical structure (with data, process 
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and parameter levels, see (a-c)) of the model allows to clarify that the relationship between the data 
and the target process is distinct from the covariance structure of the process, and further 
distinguishes between model assumptions (often quite similar in different studies) and the employed 
inference techniques (typically different in different studies), therefore providing a cohesive 
framework for propagating uncertainty through an analysis. The reader is referred to Tingley et al. 
(2012) for a more detailed overview of possible paleoclimate applications of hierarchical statistical 
modelling. 
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2 – Report on the Bayesian hierarchical model 

This section provides an update on the status of the work progress concerning the development of 
the Bayesian hierarchical modelling strategy for describing space-time error dependencies. A first 
model was built upon the dynamic linear model (DLM) concept: it currently works at the grid-point 
level and has been tested and applied to a single-model ensemble of decadal climate predictions. It 
allows for a structural decomposition of the drift into regional and local components, each further 
separated into long-term and seasonal components. The conditional estimation of the drift 
components and their evolution achieved within the Bayesian framework allows accounting for 
uncertainty in both observations (i.e., empirical estimates of the drift) and model Gaussian error 
parameters through sampling of the posterior distribution of associated variances by MCMC. A 
second model was built upon the concept of spatial analysis. This model works on a multi-model 
framework and focuses on the spatial features of the bias (in contrast to the DLM, which focuses on 
the temporal development of the drift): it quantifies an overall common bias that is obtained by 
synthesizing bias across the different climate models in a multi-model ensemble, and model-specific 
individual bias components that are characterized as non-stationary spatial fields, further 
determining each model’s contribution to the overall bias. 

The following sections, based on two manuscripts currently under review in Nature Communications 
(Zanchettin et al., 2016) and in Stochastic Environmental Research and Risk Assessment (Arisido et 
al., 2016), provide a description of the current DLM implementation (sections 2.1 and 2.2), present 
some results from the current application of the model (section 2.3), and provide a description of the 
Bayesian hierarchical model for spatial analysis of the bias (section 2.4). An outline of future work is 
provided in section 2.5. 

 

2.1 Statistical model for drift estimation 

At the process level, the drift Δi(t) at grid point i and integration month t is described as a 
combination of a local (grid-point) component Λi(t), further splitted in non-seasonal and seasonal 
contributions (λi(t) and λs

i(t), respectively), and a large-scale or regional component Ρi(t), also further 
splitted in non-seasonal and seasonal contributions (ρi(t) and ρs

i(t), respectively): 

Δi(t) = Λi(t) + Ρi(t) = λi(t) + λs
i(t) + ρi(t) + ρ

s
i(t)     (2.1) 

The non-seasonal drift components are modelled as follows: λi(t) = λi(t-1) + εi(t), i.e., as a first-order 
random walk with Gaussian error εi(t)~N(0,Wε); ρi(t) = 2ρi(t-1) - ρi(t-2) + δi(t), i.e., as a second-order 
random walk with Gaussian error δi(t)~N(0,Wδ). The latter is equivalent to a cubic spline smoothing 
and implies longer-term dependencies, i.e., longer memory, for regional errors compared to local 
errors. The seasonal components are modelled using harmonic functions (Laine et al., 2014). 

At the data level, Λi(t) and Ρi(t) are observed through differences between hindcast and assimilated 
values (D) according to the following assumption: 
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Di(t) = Δi(t) + γ i(t) = Λi(t) + Ρi(t) + γ i(t)      (2.2) 

D*i(t) = Ρi(t) + ζ i(t)        (2.3) 

where γi(t)~N(0,V), ζ i(t)~N(0,V), and D*i(t) is the area-weighted mean of the differences between 
hindcast and assimilated values in the neighbourhood of grid-point i. An 11x11 grid-point area was 
considered in the current application. 

 

2.2 Dynamic Linear Model implementation 

The formulation of the statistical model above allows for a straightforward implementation within 
the dynamic linear model (DLM) framework. DLMs are based on a state-space approach, i.e., 
unobservable state variables are used that allow direct modeling of the process (Y) generating the 
observed data (Z)(Brogan, 1974; Laine et al., 2014). DLMs have the general form: 

Z(t) = F Y(t) + v(t)                                  (2.4) 

Y(t) = G Y(t-1) + w(t)                     (2.5) 

where t is the discrete time variable representing, in our case, monthly values, Z(t) is a vector of p 
observations at time t, Y(t) is the underlying state vector of dimension m, G is the mxm system 
matrix, and F is the mxp observation matrix. We suppose that v(t)~N(0,V) and w(t)~N(0,W) are the 
observation and model Gaussian errors, respectively, that are serially and mutually uncorrelated. In 
this formulation, the covariance matrices V and W contain the model parameters Ɵ. If we suppose 
that the unknown parameters are random the DLM formulation can be seen as a BHM where (2.4) 
and (2.5) are typically referred to as observation equation and system equation, respectively. 

We have applied the DLM to each grid-point i of the considered domain. Following (2.2) and (2.3), 
and having p values of Di(t) (i.e., having p hindcasts) the observation vector in each grid-point is 
defined as Z(t) = {Di

1(t), ..., Di
p(t), Di*

1(t), ..., Di*
p(t)}’.  

Following (2) and accounting just for the 12-month seasonality for both λ(t) and ρ(t), the state vector 
is defined as Y(t) = {λ(t), λs(t), λs*(t), ρ(t), ρ(t-1), ρ

s(t), ρs*(t)}’. Following Laine et al. (2014), λs(t) and 
ρs(t) are harmonics with general form acos(π/6t)+ bsin(π/6t), while λs*(t) and ρs*(t) are their 
respective conjugates with general form -asin(π/6t)+ bcos(π/6t), and a and b are constants. 
Therefore, the dimension of the state vector is m=7. 

The observation matrix F is defined following (2.2) and (2.3). In order to reduce computational 
requirements, we apply the Bayesian inference on one common parameter V for all observations and 
two parameters W: Wλ for λ(t), λs(t) and λs*(t), and Wρ for ρ(t), ρs(t) and ρs*(t). We define weakly 
informative lognormal priors with parameters (0,1) for V, Wλ and Wρ. 

The sequential definition of the process model (having a conditional dependency only on the 
previous time step) allows to use the Kalman filter formulas for calculating the posterior distribution 
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(1.1) (Laine et al., 2014). We use a slice-sampler algorithm (Radford, 2003) to iteratively sample from 
the full posterior distribution of the unknown parameters Ɵ. Then, Kalman filter and Kalman 
smoother are used to iteratively sample the Y states along the so-obtained Monte Carlo Markov 
Chain to derive marginal distributions for each of the state components. 

 

2.3 Structural decomposition of the drift  

We report here an exemplary result obtained by the application of the DLM described in sections 2.1 
and 2.2 to output from the MiKlip prototype system for decadal climate predictions, which is based 
on the low resolution version of the Max Planck Institute - Earth System Model (Marotzke et al., 
2016). We use the MiKlip experiments based on full-field assimilation of the ORAS4 ocean reanalysis 
data (Balmaseda et al., 2013). The “r1” ensemble initialized at the end of each year between 1960 
and 2000 was used in the main analysis. We refrain from showing more results as this work is 
currently under review in the scientific journal Nature Communications. The shown results aim at 
exemplifying how the Bayesian framework upon which the DLM is built allows to focus on different 
aspects of uncertainty in climate model errors. Figure 2.1 shows, for an exemplary grid-point in the 
Angola-Benguela front region, that the largest uncertainty to account for in the estimation of the 
drift stems from the data model parameter V (included in the observation equation (2.4)), while the 
smallest uncertainty stems from the Wρ parameter. We tested the impact of using different input 
data to the dynamic linear model by constructing different hindcast ensembles, including sub-
ensembles of the r1 ensemble used in the main analysis, as well as super-ensembles including 
multiple realizations for each hindcast. Input data affect only slightly Wλ, as seen by the largely 
overlapping distributions in Figure 2.1b. A more constrained estimation of V is generally achieved by 
increasing the size of the ensemble, with only negligible changes in the estimated mean. In contrast, 
the use of strongly reduced ensembles can produce major discrepancies in the parameter estimation 
(Figure 2.1a). For very large ensembles including multiple realizations of the same hindcast, the more 
constrained estimation of V contrasts the more uncertain estimation of Wρ, which therefore also 
becomes relatively more important (Figure 2.1c). These results reveal the non-trivial dependency of 
different of different uncertainty sources for drift estimation on the quality and quantity of available 
empirical information about the drift.  
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Figure 2.1 – Posteriori marginal log-distributions of the parameters of the Bayesian hierarchical model as sampled along the 
Monte Carlo Markov Chain. Shown parameters are the covariances of error components included in the dynamic linear 
model, for a) observational error, b) dynamical error for the local component, c) dynamical error for the regional 
component. Plotted estimates are for one exemplary grid-point over the Angola-Benguela front region, and different 
ensembles generated based on the available MiKlip ORAS4 hindcasts. The grey thick line is the scaled prior. The bold 
histograms indicate estimates for the setup used in the main analysis. Empirical distributions are smoothed with a 5-point 
Hanning window. uncertainty sources for drift estimation on the quality and quantity of available empirical information 
about the drift. 

2.4 Bayesian hierarchical spatial assessment of the bias in a multi-model ensemble 

The model is described in Arisido et al. (2016) and we report here a few technical notes on the 
general approach. Our aim is to obtain a statistical representation of climate model biases in a multi-
model ensemble in order to separate an overall common bias from the individual components. 

Climate model bias is determined by comparing output data against observations. We let Y(s) to 
represent the temperature observations and Xj(s) to denote the temperature simulated by the 
climate model j in an ensemble of Q models, at the spatial location s ∈ D for the domain D in R2. 
Empirical climate model biases are then calculated as Bj(s) =Y(s) - Xj(s); j = 1, ..., Q, where Bj(s) 
denotes the bias of climate model j relative to the observations at spatial location s. For n sites in D, 
we observe the biases, namely {Bj(si), ..., Bj(sn)}. 

The Bayesian hierarchical model is formulated based on three levels: data, process, and parameters 
(Berliner et al., 2003, see also (1.1)). The data model captures the information given in the form of 
empirically measured biases, conditional on a hidden spatial bias process. The process level models 
the spatial structure and links the hidden spatial process to a set of parameters. In the parameter 
model, prior distributions are specified for the parameters. The three levels are specified in terms of 
probability distributions in a hierarchical structure shown in (a-b) of section 1 in this report. 
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2.4.1 Data model 

We assume that the empirical bias Bj(s) can be decomposed into two components: a spatial 
component Mj(s) and a noise component εj(s): 

Bj(s) = Mj(s)+ εj(s); j = 1,...,Q        (2.6) 

where {εj(s)} is a Gaussian white noise with zero mean and variance σ2
ε,j, and independent from the 

spatial component {Mj(s)}. Additionally, the noise component  {εj(s)} is assumed to be independent 
from {εk(s)}, for k ≠ j. Thus, conditionally on the hidden spatial process {Mj(s)}, the observed bias Bj(s) 
has a Gaussian distribution with mean Mj(s), and variance σ2

ε,j that represents the data model level. 

2.4.2 Process model 

The spatial process {M(s)}, with M(s) = (M1(s), ..., MQ(s))’ is multivariate and can be modeled in 
different ways (Gelfand et al. 2010). We adopt an approach based on kernel basis functions (see, e.g., 
Higdon, 1998) and we suppose that: 

 
                                                                (2.7) 

with j=1, ... , Q, and where w(s) = {w1(s), ..., wp(s)}’ is a vector of weighting kernels, βj = (βj,1, ..., βj,p)’ is 
a vector of unknown random parameters and p << n denotes the number of components. We 
assume that the climate bias is an additive decomposition of a large scale error signal and small scale 
error signals including local model bias as well as local effects of, e.g., sampling of internal climate 
variability. The goal is to synthesize this overall common bias component, which is the same across 
all models in the ensemble. To this purpose we consider a random effect model (e.g., Furrer et al. 
2007; Kang et al. 2012) for the random parameters βj. More precisely, we assume that the kth 
random parameter for the climate model j, βj,k, is centered at the overall random effect αk, namely: 

βj,k = αk +  νj,k,  j=1, ..., Q; k=1, ..., p       (2.8) 

The vector of the overall random effects α = (α1, ..., αp)’ has multivariate Gaussian distribution α ~ 
Gau(0,G), where G is the non-diagonal pxp covariance matrix. The term νj ={ νj,1, ..., νj,p}’ denotes a 
vector of independently distributed zero-mean Gaussian processes, νj ~ Gau(0; τ2

jIp), where Ip is the 
pxp identity matrix. Centering βj,k about the overall random effects ak corresponds to our assumption 
that the various models share a common bias signal. Nevertheless, we expect departures of each 
climate model bias from the overall common bias, and this difference is reflected by the variance 
parameter τ2

j. Specifically, different values of τ2
j across the various models indicate different levels of 

departure from the common bias. Alternatively, similar values of τ2
j for different models indicate that 

they vary similarly about the overall common bias, suggesting the contribution of each climate model 
in estimating the overall common bias is similar. In fact, if we impose the restriction τ2

1 = τ2
2 = ... = 

τ2
Q, the common overall bias corresponds to a simple average of biases from all models. Combining 

(2.7) and (2.8) the process model is expressed as: 
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                                                                (2.9) 

where μ(s) = Σp
k=1,...,p wk(s)αk specifies the overall common bias and ηj(s) = wk*(s) νj,k describes the jth 

model-specific features, or the departure of the jth model bias from the common overall bias. Here, 
we make a distinction between the weighting kernels used to describe μ(s) and ηj, i.e., w is different 
from w*. Since the individual components ηj(s) aim to capture local-scale features, a larger number 
of kernels is required to capture this bias component compared to that necessary to describe the 
overall common bias, i.e., p < p’. Further, ηj(s) follows the zero mean Gaussian distribution, ηj(s) ~ 
Gau(0, τ2

jw*(s)w*(s)’). In other words, the model suggests that the spatial process Mj(s) is 
decomposed into an overall common component μ(s) and an individual component ηj(s). 

As an exemplary illustration of an application of the model, Figure 2.2 illustrates the posterior 
samples of the variance parameters {τ2

j: j=1,...,6} obtained for an application of the BHM to the case 
of near-surface air temperature bias over the tropical Atlantic and surrounding regions in an 
ensemble of six historical climate simulations performed with different models. 

 

Figure 2.2 – Boxplots of the posterior samples of the variance parameters {τ
2

j: j=1,...,6} (here illustrated as standard 
deviations) obtained for an application of the Bayesian model described in section 2.4 to the case of near-surface air 
temperature bias over the tropical Atlantic and surrounding regions. The bias data were calculated from 1950-1999 
climatologies of six historical simulations contributing to CMIP5 described in Zanchettin et al. (2015) and of NCAR reanalysis 
data. Bold solid horizontal lines are the medians, the boxes indicate the 25th-75th percentile range, and the wiskers are the 
5th-95th percentile ranges. Figure adapted from Arisido et al. (2016) 

The variance parameters τ2
j are useful to assess how each climate model bias varies about the overall 

common bias. The marked differences in terms of τ values across the individual climate models 
highlight how differently they contribute to the overall common bias. For instance, CCSM4 varies the 
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least, whereas IPSL and GISS vary the most about the overall common bias. Thus, in terms of 
weighting the contributions of each model in synthesizing the overall common bias, CCSM4 is ranked 
first, whereas IPSL and GISS have smaller weights. One benefit of the Bayesian hierarchical method is, 
therefore, that it allows to determine the heterogeneity across the climate models, highlighting the 
limitations of equal weight assumption often adopted by traditional empirical estimates. 

 

2.5 Outline of future work 

The core of the DLM described in sections 2.1 and 2.2 will be used to build a Bayesian hierarchical 
model for the climate model drift in SSTs in the Angola-Benguela front region, to test hypotheses 
about remote influence on the error development. This version of the DLM will make use of spatially-
aggregated climatic indices representing regional features of the drift in key geophysical parameters, 
including shortwave and latent-heat surface fluxes in the Benguela region, winds in the 
equator/Benguela region, SSTs in the equatorial Pacific and in the Southern Ocean. The scope is to 
account for predictors affecting the evolution of the drift, and therefore move from a diagnostic 
perspective to a prognostic framework. The use of spatially-aggregated data for all quantities in the 
model, will allow to increase the complexity of the DLM, for instance to account for dynamic F and G 
operators in the observation and process equations in (2.3 and 2.4). 

The BHM for probabilistically assessment and quantification of spatially referenced climate model 
biases in multi-model ensembles described in section 2.4 will be extended to include a temporal 
component. The main challenge will be to formulate a computationally efficient method for such an 
extensive approach taking into account the spatial and temporal features simultaneously. 

Further development of the work is described in PREFACE Milestone MS34. 
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3 – Description of statistical models for spatial misalignment 

In the current implementation of the DLM described in sections 2.1 and 2.2, observed and simulated 
data are expected to be given on the same grid. This expectation is fulfilled in our applications of the 
model so far, as we considered the output of the assimilation run used to initialize the hindcasts as 
our analog of observations. Also, in the current implementation of the BHM described in section 2.4, 
all model output is spatially interpolated to the same observational grid to resolve the misalignment 
between observations and outputs before fitting the BHM. The uncertainty associated to the 
interpolation can nonetheless affect the bias estimation in case of strong spatial misalignment 
between observations and model outputs. In our applications so far, the high spatial resolution of 
both observations and climate model output supported our expectation that the interpolation only 
minimally influences the result. However, when there is concern of substantial uncertainty due to 
interpolation, it may be desirable to build a model that is able to handle such spatial misalignment 
directly. One possible approach in the Bayesian framework is the hierarchical approach for nested 
block-level realignment (e.g., Banerjee et al. 2014), but this method requires that the model output 
to be nested in the observational grid (Mugglin and Carlin 1998). A simpler solution for the spatial 
model described in section 2.4 is, once the model outputs are firstly predicted to the observational 
grid using a stochastic model based approach such as the kriging method, to rectify the uncertainty 
that has been introduced by inflating the variance of the error εj(s) in the data level (see equation 2.6 
in section 2.4). We denote the predicted value from climate model j at spatial location s by X*j(s). Its 
variance, δ2

j(s) = var(X*j(s)) is zero if the model output grid and the observational grid coincide in s, 
otherwise it will be positive. Thus we specify 

var(εj(s)) = σ2
j + γj δ

2
j(s)         (3.1) 

where the modulating parameter γj is positive. This slight modification add further parameters to the 
BHM, for which we can assign a prior distributions similarly to σ2. 

 

Kriging is therefore a key component of our proposed approach to solve and accounts for spatial 
observations-simulations misalignments (for details on the method see: Banerjee et al., 2014). We 
developed a code in R that uses kriging solves spatial misalignment between model output and 
observations using the R package and the R library geoR (Ribeiro Jr and Diggle, 2001). The proposed 
software performs predictions based on maximum likelihood estimates, but a Bayesian approach can 
be easily implemented as well (see below). Different covariance models are tested, and the best 
performing model according to the Akaike Information Criterion is used for the prediction. Appendix 
1 provide the R code and test input data in text format. Kriging allows also specifications of 
uncertainty associated to predictive distributions for prediction locations (observational grid) 
through posterior distributions within a Bayesian approach. In this case, let X(s) be the output of a 
climate model and Y(s) the observation in a site s ∊ D ⊂ R2. We assume that observations Y = 
{Y(s1),...,Y(sn)} and the climate output X* = {X*(s*1),...,X*(s*m)} are on different grids. The interest is 
therefore to predict X = {X(s1),...,X(sn)} using the information carried by X*. In probability terms it 
means that the conditional distribution pr(X|X*,ϴ) is required. 
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This predictive distribution takes into account the parameter uncertainty by averaging over the 
parameter space the conditional distribution  pr(X|X*,ϴ), with weights given by the posterior 
distribution for the model parameters  pr(ϴ|X*). To measure the uncertainty, we require the 
prediction variance that is given by Var(X|X*). The geoR routine developed for R provides a way to 
compute pr(X|X*) and Var(X|X*). Figure 3.1 illustrates an exemplary idealized application of the 
Bayesian kriging to the case of predicting SST in a number of sites where ecological observations are 
available (in this case fish eggs and larvae based on the ichthyoplankton dynamics; see Lett et al., 
2008 for a more detailed description). The original SST data are on a regular grid (left panel), while 
the prediction sites are irregularly distributed (mid panel). The method yields an uncertainty 
estimation for each prediction location (right panel).  

 

 

Figure 3.1 - Results from an exemplary idealized application of the kriging method to the case of SST 
misalignment: observed values are on a regular grid (left panel), but information is requested on an 
irregular grid, misaligned from the observational grid; kriging is used to predict the SST values on the 
irregular grid (middle panel) and quantify the uncertainty associated to the prediction (right panel).  
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Appendix 1 

R-code to solve spatial misalignment between observations and model output: 

#===================================================================================== 
# Software for solving spatial misalignment between model output and observations 
# using the R package and the library geoR. 
# The misalignment is solved using kriging. The software performs predictions based on 
# maximum likelihood estimates, but a Bayesian approach can be easily implemented as 
# well. Different covariance models are tested, and the best performing model according 
# to the Akaike Information Criterion is used for the prediction. 
# The code requires: 
# R and geoR installed 
# input model output (longitude, latitude, data) 
# a list of spatial locations (longitude, latitude) where to perform the prediction 
# 
# To install geoR type in the console (then follow instructions): 
# install.packages("geoR") 
# 
# Original code written by: Carlo Gaetan; modified by: Davide Zanchettin 
# Last update: 19/19/2016 
# ==================================================================================== 
 
rm(list = ls()) 
library(geoR) 
# == 1 ========= LOAD AND PRE-PROCESS DATA ================ 
# In this test case we use ASCII files for all inputs, this can be easily changed to 
# handle otherfile formats, such as .nc 
# load model output and associated spatial information: 
data.model<-read.table(file="test_data_model.txt",header = TRUE) 
# load the prediction coordinates 
pred.grid<-read.table(file="test_pred_coords.txt",header = TRUE) 
# Convert the model data in a geodata object 
data.geo<-as.geodata(data.model) 
# supervised assessment of the data spatial structure is necessary to appropriately 
# define the kriging model: 
# we plot the data to check for possible non stationarity 
plot(data.geo) 
# non-stationarity is confirmed inspecting the empirical variogram 
# in the four main directions 
plot(variog4(data.geo)) 
# we accordingly define a trend to be removed 
trend <-"1st" # other choices: constant "cte", 2nd order "2nd" 
# == 2 ========= DEFINE MODEL PARAMETERS FOR THE KRIGING ================ 
# We search for a covariance model among the most frequently used models 
# User can change/expand the list, to check for available models type 
# help(cov.spatial) in the console 
cov.model<-c("exponential","spherical","cubic") 
nmod<-length(cov.model) # the number of models that we will compare 
# We estimate covariance parameters by fitting a parametric model using the 
# maximum likelihood method. 
# First of all we calculate the initial guess for the covariance parameters: 
# the variance .... 
fit.lm<-lm(data.geo$data~data.geo$coords) 
sigma2.hat<-mean(residuals(fit.lm)^2) 
# ... and the range 
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phi.data<-quantile(dist(data.geo$coords),0.5) 
# We create a matrix for storing the estimates and statistics from the fitting 
results<-matrix(0,nmod,3+length(coef(fit.lm))) 
# fitting procedure, testing all the nmod models available 
for (i in 1:nmod) { 
  fit<-likfit(data.geo,trend = trend,ini.cov.pars = c(sigma2.hat,phi.data),cov.model=cov.model[i]) 
  results[i,1]<-fit$AIC 
  results[i,2:3]<-fit$cov.pars 
  results[i,-(1:3)]<-fit$beta 
} 
# determine the best model according to the AIC: 
best.model<-which.min(results[,1]) 
# eventually define the parameters for the kriging 
krige.param<-krige.control(type.krige = "ok",trend.d=trend,trend.l = trend, 
                        beta=results[best.model,-(1:3)], 
                        cov.model = cov.model[best.model], 
                        cov.pars=results[best.model,(2:3)]) 
# = 3 ========= PERFORM THE KRIGING AND SAVE PREDICTIONS ================ 
# predict values at the wanted locations 
pr <- krige.conv(data.geo, loc=pred.grid, krige=krige.param) 
# save the results with an indication of the best model 
write.table(cbind(pred.grid,pr$predict,pr$krige.var), 
         file=paste("predictions-from-", cov.model[best.model],"-model.txt",sep=""), 
         row.names = FALSE,col.names = c("lon","lat","prediction","variance"))                         
 
# ==================================================================== 
# ==================================================================== 
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Test input files to run the R code (copy paste to a text editor to create the files) 

test_pred_coords.txt 

"lon.o" "lat.o" 
-18 13.061197 
-16.833333 13.548019 
-18.833333 14.841303 
-17 15.645769 
-18.75 17.722389 
-16.833333 17.722389 
-20.416667 19.382525 
-18.416667 18.277542 
-16.666667 19.775386 
-21.083333 20.24555 
-18.416667 20.636276 
-17.583333 20.636276 
-18.25 23.035973 
-16.833333 22.651663 
-18.75 25.167614 
-17.583333 24.030053 
-15.75 24.18232 
-18.333333 26.145044 
 

test_data_model.txt 

"lon.m" "lat.m" "data.m" 
-24.5 34.5 18.145401 
-23.5 34.5 18.078917 
-22.5 34.5 18.027298 
-21.5 34.5 17.987389 
-20.5 34.5 17.940502 
-19.5 34.5 17.886814 
-18.5 34.5 17.896622 
-17.5 34.5 17.959257 
-16.5 34.5 17.95348 
-15.5 34.5 17.90065 
-14.5 34.5 17.91044 
-13.5 34.5 17.990269 
-12.5 34.5 17.982979 
-11.5 34.5 17.870398 
-10.5 34.5 17.771492 
-9.5 34.5 17.663475 
-8.5 34.5 17.607363 
-7.5 34.5 17.631123 
-6.5 34.5 17.548195 
-24.5 33.5 18.638432 
-23.5 33.5 18.615002 
-22.5 33.5 18.57058 
-21.5 33.5 18.506702 
-20.5 33.5 18.4361 
-19.5 33.5 18.353292 
-18.5 33.5 18.365152 

-17.5 29.5 20.016197 
-16.5 29.5 19.886494 
-15.5 29.5 19.654039 
-14.5 29.5 19.426239 
-13.5 29.5 19.19722 
-12.5 29.5 19.024338 
-11.5 29.5 18.968414 
-10.5 29.5 18.779444 
-24.5 28.5 20.722494 
-23.5 28.5 20.717613 
-22.5 28.5 20.657736 
-21.5 28.5 20.544022 
-20.5 28.5 20.452877 
-19.5 28.5 20.375641 
-18.5 28.5 20.325451 
-17.5 28.5 20.308908 
-16.5 28.5 20.190445 
-15.5 28.5 19.958775 
-14.5 28.5 19.723335 
-13.5 28.5 19.515896 
-12.5 28.5 19.145676 
-11.5 28.5 19.071997 
-24.5 27.5 21.09367 
-23.5 27.5 21.147472 
-22.5 27.5 21.115993 
-21.5 27.5 20.99926 
-20.5 27.5 20.869976 
-19.5 27.5 20.722078 
-18.5 27.5 20.625551 
-17.5 27.5 20.58046 
-16.5 27.5 20.419743 
-15.5 27.5 20.1493 
-14.5 27.5 19.924217 
-13.5 27.5 19.686445 
-24.5 26.5 21.473385 
-23.5 26.5 21.569937 
-22.5 26.5 21.572628 
-21.5 26.5 21.473003 
-20.5 26.5 21.311937 
-19.5 26.5 21.084301 
-18.5 26.5 20.901493 
-17.5 26.5 20.759575 
-16.5 26.5 20.500969 
-15.5 26.5 20.179893 
-14.5 26.5 20.005894 
-24.5 25.5 21.829956 
-23.5 25.5 21.880066 
-22.5 25.5 21.850639 
-21.5 25.5 21.725945 
-20.5 25.5 21.54113 
-19.5 25.5 21.286901 
-18.5 25.5 21.020136 
-17.5 25.5 20.74387 

-23.5 17.5 23.106407 
-22.5 17.5 22.977242 
-21.5 17.5 22.653553 
-20.5 17.5 22.470512 
-19.5 17.5 22.393433 
-18.5 17.5 22.084312 
-17.5 17.5 21.718027 
-16.5 17.5 21.589159 
-24.5 16.5 23.348642 
-23.5 16.5 23.374643 
-22.5 16.5 23.257502 
-21.5 16.5 22.941814 
-20.5 16.5 22.745018 
-19.5 16.5 22.615131 
-18.5 16.5 22.349901 
-17.5 16.5 22.136673 
-16.5 16.5 22.080067 
-24.5 15.5 23.599804 
-23.5 15.5 23.575127 
-22.5 15.5 23.497173 
-21.5 15.5 23.293831 
-20.5 15.5 23.106049 
-19.5 15.5 22.866341 
-18.5 15.5 22.543568 
-17.5 15.5 22.368332 
-16.5 15.5 22.297155 
-24.5 14.5 23.818783 
-23.5 14.5 23.702259 
-22.5 14.5 23.703911 
-21.5 14.5 23.726139 
-20.5 14.5 23.582172 
-19.5 14.5 23.203403 
-18.5 14.5 22.75758 
-17.5 14.5 22.549826 
-24.5 13.5 24.04789 
-23.5 13.5 23.962259 
-22.5 13.5 24.04623 
-21.5 13.5 24.180634 
-20.5 13.5 24.110043 
-19.5 13.5 23.777782 
-18.5 13.5 23.262775 
-17.5 13.5 22.8829 
-16.5 13.5 22.889908 
-24.5 12.5 24.304413 
-23.5 12.5 24.356556 
-22.5 12.5 24.507935 
-21.5 12.5 24.635487 
-20.5 12.5 24.680607 
-19.5 12.5 24.599907 
-18.5 12.5 24.08736 
-17.5 12.5 23.403912 
-16.5 12.5 23.191395 
-24.5 11.5 24.66238 
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-17.5 33.5 18.463032 
-16.5 33.5 18.461884 
-15.5 33.5 18.385132 
-14.5 33.5 18.372902 
-13.5 33.5 18.431051 
-12.5 33.5 18.386391 
-11.5 33.5 18.214281 
-10.5 33.5 18.070671 
-9.5 33.5 17.93914 
-8.5 33.5 17.70793 
-7.5 33.5 17.694485 
-24.5 32.5 19.086906 
-23.5 32.5 19.136896 
-22.5 32.5 19.116413 
-21.5 32.5 19.030277 
-20.5 32.5 18.944124 
-19.5 32.5 18.846058 
-18.5 32.5 18.842823 
-17.5 32.5 18.934465 
-16.5 32.5 18.913292 
-15.5 32.5 18.797447 
-14.5 32.5 18.723894 
-13.5 32.5 18.691895 
-12.5 32.5 18.575626 
-11.5 32.5 18.355335 
-10.5 32.5 18.212433 
-9.5 32.5 18.155609 
-24.5 31.5 19.517925 
-23.5 31.5 19.559135 
-22.5 31.5 19.532757 
-21.5 31.5 19.444714 
-20.5 31.5 19.37141 
-19.5 31.5 19.296373 
-18.5 31.5 19.280172 
-17.5 31.5 19.333891 
-16.5 31.5 19.280769 
-15.5 31.5 19.12685 
-14.5 31.5 18.998377 
-13.5 31.5 18.887627 
-12.5 31.5 18.730865 
-11.5 31.5 18.526865 
-10.5 31.5 18.376181 
-9.5 31.5 18.330311 
-24.5 30.5 19.965342 
-23.5 30.5 19.914927 
-22.5 30.5 19.851475 
-21.5 30.5 19.777428 
-20.5 30.5 19.742561 
-19.5 30.5 19.732014 
-18.5 30.5 19.709419 
-17.5 30.5 19.690987 
-16.5 30.5 19.582092 
-15.5 30.5 19.375612 
-14.5 30.5 19.187035 
-13.5 30.5 19.007244 
-12.5 30.5 18.856388 
-11.5 30.5 18.757885 
-10.5 30.5 18.635067 

-16.5 25.5 20.387247 
-15.5 25.5 20.084164 
-14.5 25.5 20.024914 
-24.5 24.5 22.142166 
-23.5 24.5 22.066067 
-22.5 24.5 21.941641 
-21.5 24.5 21.75272 
-20.5 24.5 21.550884 
-19.5 24.5 21.320679 
-18.5 24.5 20.983046 
-17.5 24.5 20.574417 
-16.5 24.5 20.209457 
-15.5 24.5 20.00679 
-24.5 23.5 22.339176 
-23.5 23.5 22.14846 
-22.5 23.5 21.964172 
-21.5 23.5 21.768909 
-20.5 23.5 21.591087 
-19.5 23.5 21.410828 
-18.5 23.5 20.988657 
-17.5 23.5 20.41778 
-16.5 23.5 20.101553 
-24.5 22.5 22.42445 
-23.5 22.5 22.130312 
-22.5 22.5 21.930611 
-21.5 22.5 21.79888 
-20.5 22.5 21.705446 
-19.5 22.5 21.629299 
-18.5 22.5 21.135151 
-17.5 22.5 20.458681 
-16.5 22.5 20.060604 
-24.5 21.5 22.511827 
-23.5 21.5 22.186901 
-22.5 21.5 22.001911 
-21.5 21.5 21.919596 
-20.5 21.5 21.828867 
-19.5 21.5 21.712351 
-18.5 21.5 21.187546 
-17.5 21.5 20.608162 
-24.5 20.5 22.638256 
-23.5 20.5 22.363331 
-22.5 20.5 22.221588 
-21.5 20.5 22.174057 
-20.5 20.5 22.003967 
-19.5 20.5 21.699444 
-18.5 20.5 21.180746 
-17.5 20.5 20.709686 
-16.5 20.5 20.584667 
-24.5 19.5 22.757185 
-23.5 19.5 22.576271 
-22.5 19.5 22.450441 
-21.5 19.5 22.345987 
-20.5 19.5 22.146904 
-19.5 19.5 21.840584 
-18.5 19.5 21.384506 
-17.5 19.5 20.937256 
-16.5 19.5 20.769146 
-24.5 18.5 22.886948 

-23.5 11.5 24.776762 
-22.5 11.5 24.951927 
-21.5 11.5 25.081587 
-20.5 11.5 25.183598 
-19.5 11.5 25.224955 
-18.5 11.5 24.778709 
-17.5 11.5 24.045332 
-16.5 11.5 23.907455 
-15.5 11.5 24.792473 
-24.5 10.5 25.106297 
-23.5 10.5 25.198812 
-22.5 10.5 25.349983 
-21.5 10.5 25.48774 
-20.5 10.5 25.576653 
-19.5 10.5 25.589922 
-18.5 10.5 25.246351 
-17.5 10.5 24.679815 
-16.5 10.5 24.673515 
-15.5 10.5 25.224014 
-14.5 10.5 26.167328 
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-9.5 30.5 18.409502 
-24.5 29.5 20.366877 
-23.5 29.5 20.299608 
-22.5 29.5 20.2244 
-21.5 29.5 20.140738 
-20.5 29.5 20.099159 
-19.5 29.5 20.088842 
-18.5 29.5 20.056791 
 

-23.5 18.5 22.837582 
-22.5 18.5 22.701916 
-21.5 18.5 22.445381 
-20.5 18.5 22.257753 
-19.5 18.5 22.117559 
-18.5 18.5 21.745264 
-17.5 18.5 21.301907 
-16.5 18.5 21.134481 
-24.5 17.5 23.08506 
 

 


