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Wang et al. 2014 | Annual-mean SST bias averaged in 22 climate models. The SST bias 

is calculated by the SST difference between the model SST and extended reconstructed 

SST. 

Sanchez-Gomez et al. 2015 | 

Climate model drifts: 

Spaghetti plot of the barotropic 

streamfunction averaged over 

the western SPG region for 

decadal hindcasts (DEC, red) 

and historical simulations 

(HIST, gray) as a function of 

leadtime; ensemble means 

(thick red and black lines). 



Drifts occur at different time scales for different variables, can obscure the initial-

condition forecast information and is usually removed a posteriori by an empirical, 

usually linear, adjustment (IPCC-AR5, 2013) 

 

DCPP guidelines for “data and bias correction for decadal climate predictions”: 

 

                                                 forecasts, j=1,…,n initial times; t=1,…,m forecast range 

10 

                                               observation-based data 

 

 

Under full-field initialization 
 

 

the model drift is  

 

 

and the bias-corrected forecast is: 

 

 

 



MOTIVATION 

 

We need to better characterize spatial-temporal features of model errors and 
the uncertainties involved in their estimation and to optimally merge 
information from observed and simulated data in space and time (it’s the goal 
of PREFACE-WP10). 



A STATE-SPACE APPROACH 
 

Dynamical linear models (DLMs) use unobservable state variables which allow direct modelling of the 
processes generating the observed variability. 
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p(yt | xt, θ) OBSERVATION UNCERTAINTY 
 

p(xt | xt-1, θ) PROCESS UNCERTAINTY 
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The DLM formulation can be seen as a special case of a general hierarchical statistical model 
with three levels: data yt, process xt, parameters θ = {G,F,V,W} (e.g., Cressie and Winkler, 2011). 
 

The classical Kalman filter formulas and Monte Carlo Markov Chain (MCMC) provide efficient 
and well founded computational tools to determine all the relevant statistical distributions. 

BAYESIAN ANALYSIS 

P(x,|y)      P(y|x ,) · P(x|) · P() 



STRUCTURAL DECOMPOSITION OF THE ERROR 
 

The process of interest incorporates systematic contributions to the decadal climate prediction errors: 

systematic mean error δ(t) with stochastic trend τ(t) 

annual and semi-annual seasonal biases, namely β12(t) and β6(t) 

 

 

 

 

 

 

 

 

The process model above can be easily extended to include the effect of external factors, by including 

additional explanatory variables. For one covariate X(t), the model becomes 

D(t) = d(t) + β12(t) + β6(t) 

d(t) = d(t-1) + t(t-1) + ed(t)  ed ~ N(0, s2
d) 

t(t) = t(t-1) + et(t)   et ~ N(0, s2
t) 

D*(t) = D(t) + γ(t)X(t)       

γ(t) = γ(t-1) + eg(t)    eg ~ N(0, s2
g)   



Bayesian analysis applied on error covariances V and W (a total of 3 parameters), use 
lognormal priors [logN(0,1)] 
 

For spatial analysis, individual grid points are processed individually, parallelization speeds 
up calculation. 

 

The MCMC (10000x) is based on the slicesampler algorithm. 

 

Use the dlmsmo routine from the dlm toolbox by Markko Laine 

A FIRST APPLICATION of the DLM 

Tropical and South Atlantic monthly 

sea-surface temperatures 

from the MiKlip full-field GECCO 1960-2000 

“r1” decadal hindcasts with MPI-ESM-LR*. 
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* Courtesy of Wolfgang Mueller, MPIM 

From: Jungclaus et al., 2013 



RESULTS – REGIONAL ERROR: SST in the Angola Benguela front 

Dj: empirical hindcast error δ: drift/bias 
τ: stochastic trend component β: seasonal bias component (annual and semiannual) 
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RESULTS – A LOOK AT RESIDUALS (DRIFT-CORRECTED ERRORS), SSTABF 

Temporal evolution of posteriori means of monthly-mean residuals in SSTs for the 

Angola-Benguela front region.  

°C 
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RESULTS – REGIONAL ERROR: SST in the Angola Benguela front 

     Effect of covariates 
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RESULTS – REGIONAL ERROR: SST in the Angola Benguela front 

     Effect of covariates 

Dj: empirical hindcast error δ: drift/bias 
τ: stochastic trend component β: seasonal bias component (annual and semiannual) 



RESULTS – PROPAGATION OF SEASONAL SST ERRORS, THE ROLE OF SALINITY 
ERRORS 

Longitudinal section at 44°S 

°C 

°C/psu 



CONCLUSIONS (WIP) AND OUTLOOK 

We propose a structural decomposition 

of systematic decadal climate 

prediction errors (drift/climatological bias 

and seasonal biases), which is 

implemented via a state-space model built 

within a Bayesian hierarchical framework. 

Results help characterizing the great complexity behind drift/climatological bias and 
seasonal biases. 
Do we understand the different physical sources, propagation mechanisms and implications of such 
model error components? 

 
There is an intimate connection between (estimated) drift development and interdecadal 
climate evolution. Furthermore, the hindcast error in a certain location can be substantially 
shaped by the effect of systematic errors over remote regions (e.g., PDO). 
Do the found uncertainties in drift components call for improved drift estimation and adjustment 
techniques? 
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THANK YOU FOR YOUR ATTENTION 



RESULTS – PROPAGATION OF SEASONAL SST ERRORS 

 Pulse error signals generated around 50°W apparently travel eastward to about 25°W, 
with a speed of approximately 4 cm/s 

°C m3/s 



RESULTS - MARGINAL POSTERIOR DISTRIBUTIONS OF SST ERRORS 

    grid-point analysis 

Shading: posteriori median (drift component); large (small) dots mark grid points where the 0-value lies within the 40th-
60th (5th-95th) percentile range of the posteriori distribution 



RESULTS – IMPACTS OF NUMBER OF “OBSERVATIONS” ON DRIFT ESTIMATION 



We use DLM to determine: 

uncertainty of unknown states and their evolution conditional to observations and model 
parameters: 

 

 

by means of Kalman based simulation smoother 

 

Uncertainty of unknown states and parameters and their evolution conditional to all available 
observations (Bayesian approach): 

 

 

 

by means of Monte Carlo Markov Chain (MCMC). This is possible thanks to the Markov property 
inherent in the definition of our model: the state at time t is statistically conditionally 
independent on the whole history as it only depends on the state at t-1. 
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A STATE-SPACE APPROACH 



BAYESIAN ANALYSIS 

 
1. KF forward recursion 

Assuming the initial distributions at time t=0 are known, the Kalman filter forward recursion can 
be used to calculate the distribution of the state vector xt, given observations up to time t: p(xt | 
yt, θ). 

This is done by calculating, as prior, the mean and covariance matrix of one-step-ahead predicted 
states: p(xt | xt-1, yt-1, θ) = N(x¯t, C¯t) 
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Then the posterior state and its covariance are calculated using the Kalman gain matrix: 

 

 

 

 

 

 

 

Equations are iterated for t=1,…,N 
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BAYESIAN ANALYSIS 

 
2. Kalman smoother backward recursion 

KF provides distributions of xt given observations up to time t. We want to account for all 
observations, so: p(xt|y1:n,) (all gaussian). The Kalman smoother backward recursion provide so-
called smoothed states for t=N,N-1,…,1. Setting rN+1 and NN+1 equal to zero: 

 

3. We need full joint posteriori distribution of all states given all observations (see 1 and 2) and 
parameters: p(x1:N | y1:N, θ). This distribution does not have a closed form solution, but we can 
draw realizations for it using the so-called simulation smoother algorithm. 

In practice, the algorithm proceeds as follows: 

- Sample from state space equations to get xI
1:N and yI

1:N   (‘ stands for tilde, smoothed values) 

- Use Kalman smoother with the new observation yI
1:N to get smoothed states xIs

1:N 

- Add the state residual to the original smoothed states to obtain x*1:N = xI
1:N-xIs

1:N+xs
1:N 
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BAYESIAN ANALYSIS 

 
4. Uncertainty on parameters 

We do not want θ to be fixed, instead we want to estimate it using Bayesian statistics. We need 
the marginal likelihood function p(y1:n | θ) with the uncertainty of states accounted for (which 
means integrated out). For each θ, such likelihood is provided as a byproduct of the Kalman filter. 

 

Due to the Markov property of the state space equations, we can calculate the marginal 
likelihood as: 

 

 

Which for a Gaussian linear model is proportional to: 

 

 

5. MCMC 

A MCMC is performed to calculate the marginal posterior distribution p(θ|y1:N), using the 
likelihood defined in step 4 and with proper priors. 

 

6. Steps 5 and 1-3 are combined to draw samples from the distribution p(x1:N, θ|y1:N) 
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BAYESIAN ANALYSIS 

 
We can apply the Bayesian inference on error covariances W and V. We must specify priors (all 
Gaussian) and likelihoods for all such unknown parameters.  

 

 

 

Practically, to reduce computational requirements, we define priors/likelihoods for the standard 
deviations of the following parameters: 

one prior for V  (actually fixed and not estimated in present analysis of MiKlip hindcasts) 

four priors for W (one for DF, one for B, one common for SF1 and SF2, one common for BSF1 and 
BSF2). 

 

An adaptive Metropolis algorithm is iteratively used to sample from the full posterior distribution 
of the unknown parameters. 

 

Kalman filter and Kalman smoother are then used to iteratively sample the system states along 
the MCMC (i.e., we derive associated marginal distributions for each of the state components) 


