On the influence of GCM biases on seasonal prediction skill in the tropical Atlantic Ingo Richter, Takeshi Doi, **Swadhin Behera** Application Laboratory, JAMSTEC, Yokohama, Japan **Noel Keenlyside** University of Bergen, Norway

> Tropical Atlantic Variability Conference UPMC, Paris, 30 November 2016

under review at Climate Dynamics

Rationale for studying biases

- "GCM biases negatively affect prediction skill and undermine confidence in climate change projections"
- statements to this effect are often used as motivation to examine GCM biases
- rationale: understand bias sources → improve model → improve predictions and projections
- few studies have tested these notions

Approach of this study

- focus on seasonal predictions (easier than projections due to verification problem)
- focus on surface wind and precipitation biases (important elements of prediction)
- focus on AMIP-style runs (easy to experiment)
- this amounts to assessing 0-lead predictions or "nowcasts"

A quick look at coupled biases and prediction skill

Example: Biases in free-running SINTEX-F

Annual mean SST, sfc wind, and precip error in SINTEX-F

Standard deviation of nino 3.4 SST

Prediction skill in the equatorial Pacific

Prediction skill in the equatorial Atlantic

from Richter et al. 2016

Experiment design

- use SINTEX-F1 runs with strong SST restoring (SST nudging runs, 1-d time scale)
- CTRL: SST restored to OISST obs.
- sensitivity tests: replace OISST climatology with that from SINTEX-F1 free-running control simulation
- test to what extent SST biases deteriorate "predictions"
- Atl_bias: SST biases in tropical Atlantic
- Pac_bias: SST biases in tropical Pacific

July 1988 SST in CTRL and Atl_bias Atlantic Niño event

Equatorial Atlantic

ACC of WEA u_sfc and eqAtl precip

ACC of precipitation in CTRL AMJ

ACC of precipitation: Atl_bias – CTRL AMJ

Simulated vs. observed precipitation EQATL: 50W-10E, 5S-5N; August

SST (shading) and precipitation (cnt) composited on 0.5 std of EQATL precip

RMSE of WEA u_sfc and eqAtl precip

Surface Currents

ACC of surface zonal currents

equatorial Atlantic (50-10E, 5S-5N)

Equatorial Pacific

ACC of Niño 4 u_sfc and Niño 3.4 precip

Conclusions

- skill of precip and sfc winds in the equatorial Atlantic quite robust to prescribed SST biases
- anomaly initialization may overcome some problems of current prediction models
- In SINTEX-F, ACC tends to decrease where mean precip is low and vice versa → fixing excessive precip may deteriorate skill
- increased ACC of precip comes at a price: rootmean-square-error increases
- role of coupled errors not discussed here

Tropical Atlantic Blog (www.jamstec.go.jp/aplinfo/climate)

AMIP Experiments with prescribed SST warming

AMIP and amipFuture SST and precipitation (annual mean)

ACC of Niño 4 u_sfc and Niño 3.4 precip

RMSE of Niño 4 u_sfc and Niño 3.4 precip

Precip and Wind Biases in Coupled GCMs

Annual mean precip and sfc wind error in CMIP5 ensemble

Precip and Wind Biases in atmospheric GCMs

Annual mean precip and sfc wind error in AMIP ensemble

Equatorial Pacific

ACC of Niño 4 u_sfc and Niño 3.4 precip

ACC of precipitation in CTRL

amip_ctl

ACC of precipitation: Pac_bias - CTRL

Pac_bias - amip_ctl

Simulated vs. observed precipitation 140-105W, 5S-5N; MAM

Geopotential (shading) and V/Omega average: 140-105W; difference Pac_bias-CTRL

Simulated vs. observed precipitation 10W-10E, 10S-EQ; MAM

Example: SST Biases in Coupled GCMs

Annual mean SST error in CMIP5 ensemble (degC)

from Richter et al. 2016a

Standard deviation of nino 3.4 SST

SINTEX-F prediction skill for nino3.4 SSTA

Adapted from Jin et al. 2008, APCC CliPAS